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Abstract

In this thesis we investigate the statistical mechanics of binary mixtures of soft-core fluids.

The soft-core pair potentials between the fluid particles are those obtained by considering

the effective potential between polymers in solution. The effective pair potential between

the centers of mass of polymers is well approximated by a repulsive Gaussian potential.

A binary mixture of Gaussian particles can phase separate, and we calculate the phase

diagrams for various size ratios of the two species. Using a simple mean field density

functional theory (DFT) , which generates the random phase approximation for the bulk

pair direct correlation functions, we calculate the surface tension and density profiles for

the free interface between the demixed fluid phases. We find that the asymptotic decay of

the interfacial profiles into bulk can be oscillatory on both sides of the interface. We also

calculate density profiles for the binary Gaussian core model (GCM) adsorbed at a planar

wall and find a wetting transition from partial to complete wetting for certain purely

repulsive wall potentials. By applying a general DFT approach for calculating the force

between two big particles immersed in a solvent of smaller ones we calculate the solvent

mediated (SM) potential between two big Gaussian core particles in the phase separating

binary mixture of smaller GCM particles. We show that the theory for calculating the SM

potential captures effects of thick adsorbed films surrounding the big solute particles and

we find extremely attractive, long ranged SM potentials between the big particles whose

range is determined by the film thickness. In the region of the solvent critical point we

also find extremely attractive SM potentials whose range is now set by the bulk correlation

length in the binary solvent.

In addition to the GCM, we also consider the effective potential between the central

monomers on each polymer chain; this potential features a weak (logarithmic) divergence

as the particle separation r → 0. A binary mixture of these particles can also phase

separate and displays many features in common with the binary GCM.
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Chapter 1

Introduction

“We all agree that your theory is crazy, but is it crazy enough?”

Niels Bohr

The subject of the theory of classical fluids is now well-established. The bulk structure

and thermodynamics of simple (atomic) fluids is reasonably well understood [1], and can

usually be described theoretically with the machinery of integral equations or perturbation

theory. However, the complexity of liquid state problems increases hugely when one is

interested in inhomogeneous fluids, i.e. the fluid in the presence of confining potentials

or at interfaces. These types of problems can often be tackled within density functional

theory (DFT) or simulation, but there is still much to understand, particularly when

there are phenomena such as wetting, associated with phase separation, or bulk criticality

involved.

Some of the focus in the field of liquid-state physics has shifted recently towards com-

plex, colloidal fluids, and this too is the subject of the present thesis. The philosophy of

our approach is to develop simple models for complex soft matter systems that capture

the essential physics. These models then become interesting in their own right, from a

statistical mechanics viewpoint, and often exhibit surprisingly rich features which do not

have direct counterparts for simple (atomic) fluids. One then asks, in turn, whether what

emerges from the models is relevant for real complex fluids. Since it is often possible to

‘tune’ the interactions in complex fluids, for example by the addition of non-adsorbing

polymers or ions to a suspension of colloidal particles, the features emerging from the

simple models are indeed often relevant for real complex fluids.

1



2 Introduction

The particular focus of this thesis concerns simple models of binary polymer solutions

where the interactions between the individual polymer chains are treated using an effective

pair potential between the centers of mass, i.e. a Gaussian pair potential. Sometimes we

consider the effective potential between the central monomers of each polymer (chapter

8). The results from the latter model also pertain to star-polymer solutions. These model

fluids display many novel features arising from the soft (penetrable) cores of the particles.

For example, mean-field theories become increasingly accurate as the density increases.

We have used DFT to calculate various properties for bulk and inhomogeneous binary

mixtures of these model fluids. The binary mixture separates into two phases if the

solution is sufficiently concentrated. Using DFT we have calculated the surface tension

and density profiles of the two species at the interface between the two demixed fluid

phases. The decay of the one-body density profiles at this fluid-fluid interface can be

either monotonic or damped oscillatory; the type of decay is determined by the location of

the state point in the phase diagram relative to the the Fisher-Widom line [2]. The system

is of particular interest since, unlike the liquid-gas interface in simple fluids, pronounced

oscillations in the one-body density profiles can occur on both sides of the interface.

We calculated the density profiles of the binary Gaussian fluid at purely repulsive

planar walls and found that for state points close to phase separation, complete wetting

films of the coexisting fluid phase can develop at the wall – see Ch. 6. In addition we

found that there is a wetting transition – i.e. for some state points at bulk coexistence

the thickness of the fluid film adsorbed at the wall is finite, but as the total fluid density

is decreased, staying at coexistence, there is a transition to a macroscopic thick adsorbed

film. This transition can be first or second order, depending on the form of the wall po-

tential, however, in this thesis we focus on the first-order transition regime. We use a fully

microscopic fluid theory, the results from which can be used to test other mesoscopic (ef-

fective interfacial Hamiltonian) descriptions of the wetting transition. Our results support

the general scheme of using effective interfacial Hamiltonians. We have also examined the

phenomenology for a different model fluid: the central-monomer (star-polymer) effective

potential.

A separate aspect of the work with Gaussian particles was to use the same simple

model to implement a general DFT method for calculating solvent mediated (SM) poten-

tials. This is a powerful way of treating multi-component fluids. One is attempting to

determine an effective interaction potential between particles of one species in a solution of
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another or several, generally smaller, species of particles. Much of the motivation for cal-

culating effective SM potentials in complex (multi-component) fluids is that a theoretical

treatment of the full mixture is often prohibitively difficult, particularly when there is a

big size asymmetry between the different species of particles in the fluid. This difficulty is

especially pronounced when one is interested in inhomogeneous systems. Formally the aim

is to integrate out the degrees of freedom of the small particles in the system, describing

their effect by means of an effective solvent (small particle) mediated potential between

the big particles. Roth, Evans and collaborators [3, 4] introduced a general DFT scheme

within which one can calculate solvent mediated potentials. This proved very effective for

hard sphere fluids where the solvent mediated potential is termed the depletion potential.

What is of particular interest is whether this (mean-field) theory can include effects such as

a wetting film of the small particles around the big particle, or critical fluctuations in the

small particle solvent fluid. Moreover these effects can result in long ranged SM potentials,

which are important when considering segregation and the stability of multi-component

fluid mixtures. When these long ranged SM potentials are attractive they can provide a

mechanism for flocculation in colloidal suspensions. These effective SM potentials can be

measured directly in colloidal systems by trapping a pair of colloids close together with

optical tweezers, and using video-microscopy to obtain the SM potential from the averaged

motion of the colloids in the traps – see for example Ref. [5]. Using the mean-field DFT

for the Gaussian core model fluid of polymers in solution, we were able to include the

effects of thick (wetting) films of the small solvent particles around the big particles and

take account of critical solvent fluctuations, in determining the SM potential between the

large particles. Because of the simplicity of the model Gaussian fluid we were able to find

an analytic approximation to the SM potential in some particular cases, thereby gaining

much insight into the general method.

This thesis proceeds as follows: In chapters 2 and 3 we provide the background theory

that the rest of the thesis is built upon. Ch. 2 is a general introduction to liquid state

theory, with a particular focus on DFT. In Ch. 3 we demonstrate (within Landau theory)

some of the phenomenology of inhomogeneous fluids, with a strong emphasis on wetting

and wetting transitions. In Ch. 4 we introduce the Gaussian core model – both the fluid

and solid phases. In Ch. 5 we introduce the binary Gaussian core model, which can

phase separates into two fluid phases at sufficiently high densities, and in this chapter

we calculate phase diagrams and various properties of the interface between the demixed
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phases, including interfacial density profiles and the surface tension. In Ch. 6 we calculate

the density profiles for the binary Gaussian fluid at a planar wall, where we find a wetting

transition from partial to complete wetting for certain purely repulsive wall potentials. Ch.

7 is where we determine the SM potential between two big Gaussian particles, immersed in

a binary solvent of smaller Gaussian particles. In Ch. 8 we consider the central-monomer

effective pair potential model for a binary polymer solution and show that this exhibits

features very similar to those described in Chs. 5 and 6 for the binary Gaussian core model.

In Ch. 9 we make a few final remarks.



Chapter 2

Background:

Theory of Classical Fluids

In this chapter we briefly introduce the theory of classical fluids, composed of spherically

symmetric particles. We will describe some methods for calculating bulk thermodynamic

quantities and correlation functions and subsequently provide a brief introduction to density

functional theory, a formalism within which one can calculate properties of inhomogeneous

fluids. This theory focuses on calculating the fluid density profile in the presence of an

external potential such as a confining wall.

2.1 Classical fluids

Classical fluids are those where the quantum mechanical nature of the underlying sub-

atomic particle interactions can be neglected and the interactions between the fluid parti-

cles can be treated in a purely classical way. This approximation is a good one for atomic

fluids if the atoms are sufficiently massive and the temperature is sufficiently high. For

example, liquid argon can be treated as a classical fluid with great success, whereas liquid

helium cannot. A good indicator for when quantum mechanical effects can be neglected

is if the thermal de Broglie wavelength Λ ¿ d, where

Λ =

√

2πβ~2

m
. (2.1.1)

β = 1/kBT is the inverse temperature, m is the mass of the atom and d is the average

separation between the atoms, which in a liquid is normally of order the diameter of the

5
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atoms. Colloidal fluids are also well described within a classical treatment.

The following discussion of classical fluids largely follows the standard presentation of

the subject, e.g. Hansen and McDonald [1]. The starting point for the theory is defining

the effective interaction potential between the particles in the fluid, Φ(rN ), where rN =

{r1, r2, ...rN} denotes the set of position coordinates for the N particles in the system.

The effective potential between the particles includes all the underlying interactions such

as the Coulomb forces between the electrons and ions of the atoms. The Hamiltonian for

such a system is

H(pN , rN ; N) =
N

∑

i=1

p2
i

2m
+ Φ(rN ) +

N
∑

i=1

V (ri), (2.1.2)

where pi denotes the momentum of and V (ri) the one-body external potential acting on

the ith particle. A further approximation often made is the assumption that the effective

potential between the particles is pairwise additive, i.e.

Φ(rN ) =
1

2

∑

j 6=i

N
∑

i=1

v(|ri − rj |), (2.1.3)

where v(r) is the potential between a pair of particles separated by a distance r. An

example of such an effective pair potential is the Lennard-Jones potential which provides

a good approximation for the effective potential between the atoms in a simple fluid such

as liquid argon [1]. The Lennard-Jones potential is

v(r) = 4ε

(

(σLJ

r

)12
−

(σLJ

r

)6
)

, (2.1.4)

where σLJ is roughly the atomic diameter and ε is a parameter which measures the strength

of the attractive part of the potential. The r−12 term models the repulsive core, which

arises from the Pauli repulsion between the atomic electrons and the attractive r−6 term

arises from the induced dipole-induced dipole interaction between the atoms at larger

separations.

Having specified the form of the interactions between the particles, the Hamiltonian

is fully determined and equilibrium thermodynamic quantities and correlation functions

can, in principle, be calculated. The equilibrium value of a phase function O(pN , rN ; N)

in the Grand canonical ensemble is given by

〈O〉 =
∞

∑

N=0

∫

drN

∫

dpNO(pN , rN ; N)f(pN , rN ; N), (2.1.5)



2.1 Classical fluids 7

where f(pN , rN ; N) is the probability density for a given configuration of the system

coordinates (pN , rN ) and we denote the product dr1dr2...drN by drN . For example, the

internal energy is

U =

∞
∑

N=0

∫

drN

∫

dpNH(pN , rN ; N)f(pN , rN ; N). (2.1.6)

The idea behind this approach, due to Gibbs, is that the equilibrium state of the system can

be determined by considering an ensemble of identical systems. By summing (integrating)

over the probabilities of each of the different configurations that occur, one can determine

equilibrium quantities. The form of f depends upon which ensemble of systems one is

considering. In the Grand canonical ensemble one fixes the volume V , temperature T

and chemical potential µ of the system. One can consider other ensembles, but in the

thermodynamic limit, V, N → ∞, they are all equivalent. In the Grand canonical ensemble

f(pN , rN ; N) =
h−3N

N !

exp[βNµ − βH(pN , rN ; N)]

Ξ(µ, V, T )
, (2.1.7)

where the Grand partition function Ξ(µ, V, T ) is

Ξ(µ, V, T ) =
∞

∑

N=0

h−3N

N !

∫

drN

∫

dpN exp[βNµ − βH(pN , rN )]

= Trcl exp[βNµ − βH(pN , rN ; N)]. (2.1.8)

We have used Trcl to denote the classical trace in Eq. (2.1.8). The partition function is a

key quantity in statistical mechanics, and it forms a link to thermodynamics because the

grand potential of the system is simply

Ω = −kBT ln Ξ. (2.1.9)

The integral in Eq. (2.1.8) over the momentum degrees of freedom is straightforward,

so the partition function can be expressed as just an integral over the configurational

(position) degrees of freedom:

Ξ =
∞

∑

N=0

zN

N !

∫

drN exp[−βΦ(rN ) − β
N

∑

i=1

V (ri)], (2.1.10)

where the activity z = Λ−3 exp(βµ). Starting from Eq. (2.1.10), if we only perform a

partial trace over the configurational degrees of freedom, we can generate a hierarchy of

particle distribution functions:

ρ(n)(rn) =
1

Ξ

∞
∑

N≥n

zN

(N − n)!

∫

dr(N−n) exp[−βΦ(rN ) − β
N

∑

i=1

V (ri)]. (2.1.11)
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If we consider the homogeneous situation, where the external potential V (ri) = 0, then

the first member of the hierarchy, ρ(1)(r) is then simply the one-body density of the fluid,

which is a constant:

ρ(1)(r) =
〈N〉
V

= ρ. (2.1.12)

We will now focus on the second member of the hierarchy, the two-body distribution

function ρ(2)(r1, r2). This is proportional to the probability of finding another particle

at r2, given there is already a particle at r1. For a fluid of spherically symmetric par-

ticles in the bulk, where the external potential is zero, translational invariance demands

ρ(2)(r1, r2) = ρ(2)(|r1−r2|) = ρ(2)(r12). It is also useful to introduce the radial distribution

function, g(r) = ρ(2)(r)/ρ2. When the particles in the fluid are far apart, r → ∞, then

their positions are uncorrelated, and g(r) → 1. However, in a dense fluid, when the sepa-

ration between the particles is only a few particle diameters, g(r) can be highly structured.

A typical plot of g(r) for a dense liquid well away from the critical point is plotted in Fig.

2.1. This was calculated using the Percus-Yevick closure to the Ornstein-Zernike equation

(details in the next section) for a fluid of particles which interact via the Lennard-Jones

potential, Eq. (2.1.4), at a temperature kBT/ε = 2.0 and density ρσ3
LJ = 0.8. In a dense

fluid, when r is only a few σLJ , g(r) can be highly oscillatory due to the packing of the

hard cores of the particles.

There are several reasons for focusing on the radial distribution function. Firstly, the

Fourier transform of the radial distribution function, the fluid structure factor, S(k), is

a quantity that is directly accessible in diffraction experiments (normally neutron or x-

ray scattering, although if the particles are larger (colloids), then one can also use light

scattering). The liquid structure factor is given by

S(k) = 1 + ρ

∫

dr (g(r) − 1) exp(ik.r). (2.1.13)

Another reason for focusing on the radial distribution function is that once it is known,

one can use it to calculate thermodynamic quantities. For example, the k → 0 limit of

S(k) is related to the isothermal compressibility χT by the compressibility equation

χT ≡ 1

ρ

(

∂ρ

∂P

)

T

=
S(0)

ρkBT
. (2.1.14)

For a system in which particles interact solely via a pairwise potential, v(r), (see Eq.

(2.1.3)), the internal energy of the system, Eq. (2.1.6), can be simplified to yield the
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Figure 2.1: The radial distribution function for a Lennard-Jones fluid, at a reduced tem-

perature kBT/ε = 2.0 and fluid density ρσ3
LJ = 0.8, calculated using the Percus-Yevick

closure to the Ornstein-Zernike equation.

internal energy per particle in terms of an integral involving only g(r):

U

N
=

3

2
kBT +

ρ

2

∫

dr g(r)v(r). (2.1.15)

This is known as the energy equation. Similarly, one can derive an equation for the

pressure, known as the virial equation [1]:

P = ρkBT − ρ2

6

∫

dr g(r)r
dv(r)

dr
. (2.1.16)

The radial distribution function for a particular model fluid can be determined in several

ways. One way is to perform a computer simulation of the fluid. This could either be

done by solving Newton’s equations, a molecular dynamics simulation, or by generating

random fluid configurations and calculating the Boltzmann weight for each configuration –

this is a Monte Carlo simulation. Another approach is that based on perturbation theories.

Here the idea is to split the pair potential of the fluid into two parts, the reference part

(normally the harshly repulsive core part) and the perturbation. The correlations in the

fluid due to the core part can be modeled by, for example, those of a hard sphere potential.

There is much known about this system and the hard-sphere radial distribution function is

well-known. One then calculates the full g(r) by perturbing about the hard-sphere result
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[1]. Another approach, which is the basis of many successful theories for g(r) in a bulk

fluid, is that based on closure approximations to the Ornstein-Zernike equation.

2.2 The Ornstein Zernike equation

In bulk, the radial distribution function for an ideal gas, g(r) = 1 for all values of r,

i.e. there are no correlations between the particles. For a real fluid, one can define a

total correlation function, h(r), as the deviation of g(r) from the ideal gas result, i.e.

h(r) = g(r)−1. The Ornstein Zernike (OZ) approach to calculating h(r) is to split up the

correlations present in h(r) into a ‘direct’ part, which will include the correlations over a

range of order the range of the pair potential, and an ‘indirect’ part, i.e. the rest. This

idea is the basis of the OZ integral equation:

h(r) = c(2)(r) + ρ

∫

dr′c(2)(|r − r′|)h(r′), (2.2.1)

where c(2)(r) is the direct pair correlation function, which is generally less structured than

h(r) and has the range of the pair potential. Eq. (2.2.1) as it stands does not enable us

to calculate h(r); we have merely shifted the problem from calculating h(r) to calculating

c(2)(r). Eq. (2.2.1) can be viewed as an equation defining c(2)(r). In order to solve Eq.

(2.2.1) we also need a closure relation, an additional equation relating c(2)(r) to h(r),

which we can use with the OZ equation, Eq. (2.2.1), to solve for h(r). The exact closure

equation can generally not be determined, and so one is forced to resort to making an

approximation. The usual route is to make a diagrammatic expansion for the correlation

functions and truncate the (infinite) series at some point or perform a re-summation [1].

For example, the Percus-Yevick closure relation [1], which was used to calculate g(r) in

Fig. 2.1, is

c
(2)
PY (r) = (1 − exp[βv(r)])(1 + h(r)). (2.2.2)

This closure is particularly good for fluids with short ranged potentials and sharply repul-

sive cores. Another closure relation is the hypernetted chain (HNC), given by [1]

c
(2)
HNC(r) = −βv(r) + h(r) − ln(1 + h(r)). (2.2.3)

This closure turns out to be particularly good for soft-core, purely repulsive pair potentials,

such as the Coulomb potential (the one component classical plasma consisting of point

particles in a neutralizing background), and in particular the Gaussian core model (GCM),
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where the particles interact via a repulsive Gaussian potential. These particles are the

subject of this thesis. What is even more striking is that for the GCM, when the fluid

density is high, then a particularly simple closure, the random phase approximation (RPA),

is also reasonably accurate:

c
(2)
RPA(r) = −βv(r), for all r. (2.2.4)

We shall return to this subject in the next section where we will describe how the OZ

equation arises naturally in the context of density functional theory.

2.3 Density functional theory: an introduction

The discussion in this section is drawn mainly from the articles by Evans [6, 7]. The

focus of density functional theory (DFT) is the one body density profile, ρ(1)(r), the first

member of the hierarchy of particle distribution functions, defined by Eq. (2.1.11). DFT is

therefore a theory for inhomogeneous fluids. If we introduce the particle density operator

ρ̂(r) =
N

∑

i=1

δ(r − ri), (2.3.1)

then we can express the partition function, Eq. (2.1.10), in terms of the particle density

operator:

Ξ =
∞

∑

N=0

Λ−3N

N !

∫

drN exp[−βΦ(rN ) + β

∫

drρ̂(r)u(r)], (2.3.2)

where u(r) = µ − V (r). The logarithm of the partition function is the Grand potential

Ω (see Eq. (2.1.9)), and so the functional derivative of Ω with respect to u(r) is simply

−〈ρ̂(r)〉, which is the first member of the hierarchy of particle distribution functions, Eq.

(2.1.11):
δΩ

δu(r)
= −〈ρ̂(r)〉 = −ρ(1)(r). (2.3.3)

A second derivative yields the density-density correlation function

β−1 δ2Ω

δu(r2)δu(r1)
= G(r1, r2) = 〈ρ̂(r1)ρ̂(r2)〉 − ρ(1)(r1)ρ

(1)(r2), (2.3.4)

from which we can obtain the second member of the hierarchy of particle distribution

functions ρ(2)(r1, r2) (see Eq. (2.1.11)), since

ρ(2)(r1, r2) = 〈ρ̂(r1)ρ̂(r2)〉 − 〈ρ̂(r1)〉 δ(r1 − r2). (2.3.5)



12 Background: Theory of Classical Fluids

Further differentiation yields the higher order particle distribution functions. It should

be emphasized that Eq. (2.3.3) is exact and does not just apply to fluids interacting

via pairwise additive potentials Eq. (2.1.3). The one body density, which we will now

denote ρ(r), is therefore a functional of u(r). It can be shown that, for a given Φ(rN ),

µ and β, ρ(r) is uniquely determined by the external potential V (r) [6, 8]. Similarly the

equilibrium probability density f (see Eq. (2.1.7)) is also a functional of the density ρ(r).

We can therefore construct a quantity

F [ρ] = Trcl[f(H −
∫

drρ̂(r)V (r) + β−1 ln f)], (2.3.6)

which is a unique functional of the one-body density [6, 7]. From this functional is con-

structed a second functional:

ΩV [ρ′] = F [ρ′] −
∫

drρ′(r)[µ − V (r)]. (2.3.7)

When the density in Eq. (2.3.7), ρ′(r), is the equilibrium density profile, ρ(r), then ΩV [ρ]

is equal to the grand potential Ω [6] and the total Helmholtz free energy is

F = F [ρ] +

∫

drρ(r)V (r), (2.3.8)

and we identify F [ρ] as the intrinsic Helmholtz free energy. The fact that the equilibrium

density profile ρ(r) minimizes the functional ΩV [ρ] results in the following variational

principle:

δΩV [ρ′]

δρ′(r)

∣

∣

∣

∣

∣

ρ′=ρ

= 0 (2.3.9)

and

ΩV [ρ] = Ω. (2.3.10)

Inserting Eq. (2.3.7) into Eq. (2.3.9) yields:

µ = V (r) +
δF [ρ]

δρ(r)
. (2.3.11)

If the fluid is at equilibrium, then the chemical potential µ is a constant throughout the

inhomogeneous fluid and the term δF [ρ]/δρ(r) in Eq. (2.3.11) is the intrinsic contribution

to the chemical potential.

When the fluid is an ideal gas, then the intrinsic Helmholtz free energy functional is

simply

Fid[ρ] = β−1

∫

drρ(r) [ln Λ3ρ(r) − 1]. (2.3.12)
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For a real fluid we can then divide the intrinsic Helmholtz free energy into an ideal gas

part, Eq. (2.3.12), and an excess part, which takes into account the correlations between

the particles in the fluid, i.e. F [ρ] = Fid[ρ] + Fex[ρ]. Eq. (2.3.11) therefore becomes

Λ3ρ(r) = exp[βu(r) + c(1)(r)] (2.3.13)

where we have used δFid/δρ(r) = β−1 ln Λ3ρ(r), the ideal gas contribution to the intrinsic

chemical potential and c(1)(r) is the excess (over ideal) term:

c(1)(r) ≡ −β
δFex[ρ]

δρ(r)
. (2.3.14)

c(1)(r) is the one-body direct correlation function and is itself a functional of ρ(r). Fur-

ther differentiation with respect to the density generates the direct correlation function

hierarchy [6, 7]:

c(n)(rn) =
δc(n−1)(rn−1)

δρ(rn)
. (2.3.15)

Of particular interest is the two-body direct correlation function:

c(2)(r1, r2) =
δc(1)(r1)

δρ(r2)
= −β

δ2Fex[ρ]

δρ(r2)δρ(r1)
. (2.3.16)

We have thus identified the direct pair correlation function, c(2)(r1, r2), for an inhomoge-

neous fluid. We introduced this function in the context of the OZ equation, Eq. (2.2.1),

for homogeneous fluids in the previous section. This identification is proved as follows: If

we insert Eq. (2.3.13) into Eq. (2.3.16), we find

c(2)(r1, r2) =
δ(r1 − r2)

ρ(r1)
− β

δu(r1)

δρ(r2)
(2.3.17)

The second term on the right hand side of Eq. (2.3.17) is the functional inverse, G−1(r1, r2),

of the density-density correlation function (see Eq. (2.3.4)). A functional inverse is defined

by
∫

dr3 G−1(r1, r3)G(r3, r2) = δ(r1 − r2). (2.3.18)

Substituting Eqs. (2.3.4), (2.3.5) and (2.3.17) into Eq. (2.3.18) and defining the inhomo-

geneous fluid total correlation function h(r1, r2) by ρ(r1)ρ(r2)h(r1, r2) = ρ(2)(r1, r2) −
ρ(r1)ρ(r2), we obtain the OZ equation for an inhomogeneous fluid [6, 7]:

h(r1, r2) = c(2)(r1, r2) +

∫

dr3 h(r1, r3)ρ(r3)c
(2)(r3, r2). (2.3.19)
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When the fluid density is a constant, ρ(r) = ρ, then this reduces to Eq. (2.2.1), the

homogeneous fluid OZ equation.

As was the case for the homogeneous OZ equation, there are very few model fluids

for which the inhomogeneous direct pair correlation function, c(2)(r1, r2), is known. How-

ever, DFT provides a formalism within which controlled approximations can be made

for c(2)(r1, r2) and hence for c(1)(r). These approximations, together with Eq. (2.3.13),

provide a prescription for calculating the inhomogeneous fluid density profile, ρ(r). Such

approximations are generally mean field in nature and so these DFT theories exhibit the

mean field critical exponents for diverging quantities, such as the bulk correlation length,

near the bulk critical point. They will also generate mean-field exponents for diverging

interfacial thermodynamic quantities and correlation lengths – see Ch. 3. One route used

to generate approximations for Fex, is to start from a functional integration of Eq. (2.3.16)

[6, 7] and then focus on making an approximation for c(2)(r1, r2). An alternative route

for determining Fex (a route limited to fluids where the potential function is pairwise

additive – i.e. Eq. (2.1.3) holds) is as follows: One can recast the potential energy term in

the Hamiltonian, Eq. (2.1.3), as [7]:

Φ(rN ) =
1

2

∫

dr1

∫

dr2v(|r1 − r2|)ρ̂(r1)(ρ̂(r2) − δ(r1 − r2)). (2.3.20)

Inserting this expression into the partition function, Eq. (2.3.2), we find that on differen-

tiating the partition function with respect to the pair potential v(r1, r2) we arrive at the

following equation:

δΩ

δv(r1, r2)
=

1

2
(〈ρ̂(r1)ρ̂(r2)〉 − 〈ρ̂(r1)〉 δ(r1, r2))

=
1

2
ρ(2)(r1, r2), (2.3.21)

where we used Eq. (2.3.5) to obtain the second equality. Inserting Eq. (2.3.7) into Eq.

(2.3.21), one obtains
δF [ρ]

δv(r1, r2)
=

1

2
ρ(2)(r1, r2). (2.3.22)

This equation can be integrated using a ‘charging’ parameter, α, to go from a reference

fluid α = 0, at the same temperature and with the same density profile, ρ(r), but where

particles interact via a pairwise potential vr(r1, r2), to the full system by means of the

pair potential

vα(r1, r2) = vr(r1, r2) + αvp(r1, r2) 0 ≤ α ≤ 1. (2.3.23)
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α = 1 is the final system when the part of the pair potential, vp, treated as the perturbation

is fully ‘turned on’. The resulting intrinsic Helmholtz free energy is [7]:

F [ρ] = Fr[ρ] +
1

2

∫ 1

0
dα

∫

dr1

∫

dr2 ρ(2)(r1, r2; vα)vp(r1, r2) (2.3.24)

where Fr is the free energy for the reference (α = 0) fluid. Eq. (2.3.24) forms the basis

for the perturbation theories mentioned earlier. Usually, the reference fluid would be the

repulsive part of the pair potential, often modeled by the hard-sphere potential. However,

if we simply use the ideal gas as the reference system, so that vr = 0, then vp = v, the full

pair potential. If in addition we make a simple approximation, ρ(2)(r1, r2; vα) ' ρ(r1)ρ(r2),

we arrive at the following intrinsic Helmholtz free energy functional:

F [ρ] = Fid[ρ] +
1

2

∫

dr1

∫

dr2 ρ(r1)ρ(r2)v(r1, r2). (2.3.25)

This approximation assumes that the pair distribution function ρ(2)(r1, r2; vα) in the sys-

tem subject to a pair potential vα is simply the product of one-body densities ρ(r1)ρ(r2),

i.e. correlations are completely ignored for all coupling strengths α. Clearly this consti-

tutes a gross mean-field-like approximation. Taking two derivatives of Eq. (2.3.25) with

respect to ρ(r), (see Eq. (2.3.16)) we find that (2.3.25) is the functional which generates

the same RPA closure in bulk, Eq. (2.2.4), for the direct pair correlation function:

c
(2)
RPA(r1, r2) = −βv(r1, r2) = −βv(|r1 − r2|). (2.3.26)

Note that (2.3.26) applies to all types of inhomogeneity. This particularly simple approx-

imation turns out, as we shall see, to be a good approximation (at least for homogeneous

fluids) when the pair potential v(r1, r2) corresponds to a repulsive Gaussian. Eq. (2.3.25)

forms the basis for much of the work in this thesis concerning the Gaussian core model.





Chapter 3

A Simple Approach to

Inhomogeneous Fluids and an

Introduction to Wetting

In this chapter we provide a brief introduction to certain aspects of inhomogeneous fluids.

We employ a simple (Landau) free energy to describe inhomogeneous fluid density profiles

with planar symmetry, and use these results to introduce the subject of wetting and wetting

transitions and to describe some of the basic interfacial phenomena involved.

In the previous chapter we described a particular (RPA) approximation that can be

made for the excess Helmholtz free energy functional of a simple fluid. The simplest

approximation that can be made for the Helmholtz free energy functional of an inhomoge-

neous fluid is to make an expansion in powers of the gradient of the density profile around

the bulk free energy of the fluid [6]:

F [ρ] =

∫

dr
[

f0(ρ(r)) + f2(ρ(r))|∇ρ(r)|2 + O(∇ρ)4
]

, (3.0.1)

where f0(ρ) is the Helmholtz free energy density for the homogeneous fluid of density ρ

and for small deviations (within linear response) f2(ρ) can be shown to be [6]:

f2(ρ(r)) =
1

12β

∫

dr r2c(2)(ρ; r), (3.0.2)

where c(2)(ρ; r) is the direct pair correlation function in a bulk fluid of density ρ. The first

term in (3.0.1) is clearly a local density contribution. If we take two derivatives of Eq.

17
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(3.0.1) with respect to ρ(r), (see Eq. (2.3.16)) then we find that the direct pair correlation

function generated is

c(2)(r1, r2) =

(

−β
∂2f0(ρ(r1))

∂ρ2
+

1

ρ(r1)
− 2βf2(ρ(r1))∇2

)

δ(r1 − r2). (3.0.3)

This result, that the direct pair correlation function is a delta-function, means that the

functional (3.0.1) is unable to incorporate the algebraic decay in the inhomogeneous fluid

density profiles that one finds when the fluid pair potentials decay algebraically, such as

for a Lennard-Jones fluid [7]. The Helmholtz free energy functional, Eq. (3.0.1), is strictly

valid for fluids which interact via short ranged pair potentials (decaying exponentially

or faster) and when the density profiles are slowly changing; one should not expect Eq.

(3.0.1) to be able to incorporate the oscillatory density profiles that one finds for a fluid

close to a strongly repulsive or hard wall.

3.1 Landau theory for simple fluids

We can simplify the square gradient Helmholtz free energy functional, Eq. (3.0.1), even

further by assuming that f2 can be taken to be a constant, i.e. that it is only weakly

dependent on the density of the fluid in the region of the phase diagram we are interested

in. Moreover we expand f0(ρ) around its value for a fluid with density ρc. We are seeking

density profiles for the fluid with temperature T and chemical potential µ of a state near

to the liquid-gas phase boundary, so we choose ρc such that ρl > ρc > ρg, where ρl and ρg

are the coexisting liquid and gas densities. We expand in powers of the (dimensionless)

order parameter,

φ(r) = L3(ρ(r) − ρc), (3.1.1)

where L is a constant with the dimensions of a length. We can choose ρc so that there are

no odd powers up to O(φ4) in the expansion [9], and in this case we find that Eq. (3.0.1)

takes the form

F [ρ] '
∫

dr (f0(ρc) + aφ2(r) + bφ4(r) +
g

2
|∇φ(r)|2), (3.1.2)

Where a and b are constants which can be determined from the expansion of the bulk

Helmholtz free energy, f0(ρ), and g is a constant proportional to f2. In Eq. (3.1.2) we

have kept only terms up to O(φ)4 and O(∇φ)2. Equation (3.1.2) is simply the Landau

free energy for an Ising magnet, where φ corresponds to the magnetization.
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We shall be using the Landau free energy, Eq. (3.1.2), in this chapter to calculate the

order parameter profiles for a fluid wetting a planar wall. Our introduction to wetting is

close to that found in Ref. [10] (see also Ref. [11]). Before moving on to discussing wetting

within Landau theory, we shall recall some of the basic properties of the functional in Eq.

(3.1.2). In the bulk of a fluid, where the order parameter is a constant, φ(r) = φb, Eq.

(3.1.2) yields the bulk free energy, Fb = V (f0(ρc) + aφ2
b + bφ4

b), where V is the volume of

the fluid. The coefficient a → 0 at the fluid critical point – i.e. a ∝ (T − Tc), where Tc is

the temperature at the critical point. The coefficient b > 0, so that the global minimum

of the free energy is at a finite value of the order parameter, φb. The equilibrium value

of the order parameter corresponds to ∂Fb/∂φb = 0, and when a < 0 and b > 0 there

are two minima, ±φb, with φ2
b = −a/2b. We will choose the value of L in Eq. (3.1.1) so

that |φb| = 1, and therefore b = −a/2 in Eq. (3.1.2). The two equilibrium values of the

order parameter, +φb and −φb, correspond to the the coexisting liquid and gas phases

respectively. We can also calculate the correlation functions generated by Eq. (3.1.2) in

each of the bulk phases. If we substitute φ(r) = φb +ψ(r) into Eq. (3.1.2), where ψ(r) is a

small fluctuation in the order parameter, φ(r), from its bulk value, φb, then we find that

from Eq. (3.1.2) we obtain

Fφb
'

∫

dr (f0(ρc) +
a

2
− 2aψ2(r) +

g

2
|∇ψ(r)|2), (3.1.3)

where we have neglected terms of O(ψ)3 and higher. Taking two functional derivatives of

Eq. (3.1.3) one obtains

δ2Fφb

δψ(r′)δψ(r)
= (−4a − g∇2)δ(r − r′). (3.1.4)

The functional inverse of the density-density correlation function, G−1(r, r′), is obtained

by taking two derivatives of the Helmholtz free energy, with respect to the fluid density

profile:

G−1(r, r′) = β
δ2F [ρ]

δρ(r′)δρ(r)
(3.1.5)

(see Eqs. (2.3.4), (2.3.16) and (2.3.18)). From this and Eqs. (3.1.4) and (3.1.1) one finds

that G−1(r, r′) = βL6(−4a − g∇2)δ(r− r′). Fourier transforming this result into k-space

one obtains the simple result

Ĝ−1(k) = βL6g(ξ−2 + k2), (3.1.6)
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where Ĝ−1 is the Fourier transform of G−1 and ξ−2 = −4a/g. In Fourier space Eq. (2.3.18)

has a particularly simple form and one finds that the Fourier transform of the density-

density correlation function has the (classical) Ornstein-Zernike form Ĝ(k) ∼ 1/(ξ−2 + k2).

We can invert the Fourier transform Ĝ(k) in order to obtain the bulk density-density

correlation function in 3 dimensions:

G(r) =
1

(2π)3
1

βL6g

∫

dk
exp(ik.r)

(ξ−2 + k2)

=
1

4πβL6g

exp(−r/ξ)

r
. (3.1.7)

One therefore identifies ξ as the bulk correlation length. Note that within this simple

Landau theory based on Eq. (3.1.2), one finds that the bulk correlation length is the same

in both the liquid and gas phases – this is because Eq. (3.1.2) corresponds to the Landau

free energy for an Ising magnet, where there is a symmetry between the ‘up’ spins and

the ‘down’ spins. For all real fluids this result, that ξ is the same in both the liquid

and the gas phases, is not generally true. Note also that the density-density correlation

function given by Eq. (3.1.7) clearly does not incorporate the oscillations one often finds

in G(r) = ρ2h(r) + ρδ(r) in the bulk liquid phase for r ∼ σ, the diameter of the fluid

particles, nor does it incorporate the oscillatory asymptotic decay that G(r) can exhibit in

certain portions of a fluid phase diagram. (The asymptotic decay of G(r), or equivalently

h(r), can cross over from damped oscillatory to monotonic, of the form in Eq. (3.1.7);

the cross over line between these two regimes is the Fisher-Widom line [2], and we shall

return to this topic in Ch. 5). This, as we anticipated earlier, means that one is unable to

obtain oscillatory inhomogeneous fluid order parameter profiles for a fluid in a monotonic

external potential V (r), which minimize Eq. (3.1.2), something which one could expect in

a more accurate theory for the density profile of a liquid at a strongly repulsive wall.

3.2 Inhomogeneous fluid order parameter profiles

In order to calculate the inhomogeneous fluid order parameter profiles due to an external

potential V (r), for a fluid whose Helmholtz free energy is approximated by Eq. (3.1.2), we

must minimize the following grand potential functional:

Ω =

∫

dr
[

ω(ρ′c) + aφ2(r) + bφ4(r) +
g

2
|∇φ(r)|2 + V (r)φ(r)

]

, (3.2.1)



3.2 Inhomogeneous fluid order parameter profiles 21

where ω(ρ′c) is the grand potential density when the bulk fluid density is ρ′
c
1. We must

simply minimize Eq. (3.2.1) subject to the boundary condition φ(∞) = −φb, i.e. we assume

that V (r) decays to zero as r → ∞. If V (r) has planar symmetry, i.e. V (r) = V (z) as is

appropriate to a planar wall, then from Eq. (3.2.1) we obtain the grand potential per unit

area

ω ≡ Ω

A
=

∫ ∞

−∞
dz

[

ω(ρ′c) + aφ2(z) + bφ4(z) +
g

2

(

dφ(z)

dz

)2

+ V (z)φ(z)

]

. (3.2.2)

The order parameter profile which minimizes this equation satisfies the Euler-Lagrange

equation

2aφ(z) + 4bφ3(z) − g
d2φ(z)

dz2
+ V (z) = 0. (3.2.3)

When V (z) = 0 (the wall has vanishing effect) the solution to this differential equation is

φ(z) = −φb tanh

(

z − l

2ξ

)

, (3.2.4)

where l is an undetermined constant; there is an infinite number of solutions. In this case,

when the external potential V (z) = 0, the order parameter profile, Eq. (3.2.4), is that for

the free-interface between the gas phase, φ(∞) = −φb, and the liquid phase, φ(−∞) = φb.

The interface is located at z = l, and noting the denominator inside the tanh in (3.2.4),

the length 2ξ determines the width of the interface. The intrinsic interfacial width takes

this value because the bulk correlation length ξ is the same in both the gas and the liquid

phase. More generally one would expect the width of the interface to be determined by

ξl + ξg, where ξl and ξg are the correlation lengths in the coexisting liquid and gas phases

respectively.

Having demonstrated how one can calculate the order parameter profile for the free

interface between coexisting liquid and gas phases within Landau theory, we can consider

the order parameter profile at a planar wall. However, before proceeding, we will briefly

review some of the thermodynamic quantities that are relevant for studying wetting and

interfaces.

1Note we have chosen the reference density ρ′
c 6= ρc in order to eliminate all odd powers of φ up to

O(φ4), that would otherwise arise due to the −µφ(r) term in (3.2.1) [9]. This in turn changes our values

for L, a and b but, of course, not quantities such as ξ.
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3.3 Thermodynamics of interfaces

For a more detailed introduction to the thermodynamics of interfaces we refer the reader

to Refs. [10, 12, 13]. Here we shall only introduce some of the ideas we will need for this

thesis. In order to describe the thermodynamics of an interface, it is useful to consider

the excess (over bulk) part of the different thermodynamic potentials. For example, one

can consider the excess grand potential

Ωex = Ω − Ωb, (3.3.1)

where Ω is the total grand potential of the system and Ωb is the grand potential for a bulk

fluid without the interface. In order to implement this, one has to define a Gibbs dividing

surface which defines the volume over which Ωb is calculated, since Ωb is extensive in the

volume of the system. When considering a fluid at a planar wall the natural choice for the

Gibbs dividing surface is the point z0 at which the external potential V (z → z0) → ∞.

Having defined the excess grand potential, Ωex, one can also consider other excess

quantities such as the excess number of particles:

Nex = N − ρbV, (3.3.2)

where N is the total number of particles in the system of volume V and ρb is the bulk

density of the fluid at the given chemical potential µ and temperature T . Similarly one

can define the excess surface entropy, Sex. The second law of thermodynamics then leads

to

dΩex = −SexdT − Nexdµ. (3.3.3)

It is often more useful to work with excess quantities per unit area of the wall such as

sex = Sex/A, γ = Ωex/A and Γ = Nex/A, which leads to

dγ = −sexdT − Γdµ. (3.3.4)

Here we have introduced the surface tension γ, which is the surface excess grand potential

per unit area, and the adsorption Γ. These are important quantities for analyzing adsorp-

tion and wetting phenomena. One can use Eq. (3.3.4) in the usual Gibbsian way to obtain

results such as

Γ = −
(

∂γ

∂µ

)

T

, (3.3.5)

the Gibbs adsorption equation, as well as generating surface Maxwell relations [10, 12, 13].



3.4 Wetting: near to coexistence 23
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Figure 3.1: A typical wetting density profile for a fluid at a wall. z is the perpendicular

distance from the wall. The bulk fluid (gas phase with density ρg) has a chemical potential,

µ, near to that for liquid-gas coexistence, µsat. The liquid phase wetting the wall has a

density ρl. For complete wetting the film thickness l → ∞ as µ → µsat.

3.4 Wetting: near to coexistence

Wetting of the interface between the fluid and the wall of a container can occur for any

fluid that exhibits liquid-gas phase separation. Wetting can occur when the bulk fluid,

say the gas phase, is in a state near to bulk coexistence. Then a thick adsorbed (wetting)

film of the coexisting liquid phase can be found adsorbed at the wall. Similarly, when

the bulk fluid is the liquid phase, near to coexistence, the interface of the liquid with a

different (repulsive) wall can be wet by the gas phase – this is complete drying. In the

complete wetting regime the thickness of the wetting film increases as the temperature of

the bulk fluid T → Tsat, the temperature at which the bulk fluid condenses. Alternatively,

as one changes the chemical potential µ → µsat, the chemical potential at which the fluid

condenses, one finds that a thick wetting film can develop at the interface. One describes

the interface between the substrate and the bulk fluid as completely wet by the other

(coexisting) fluid phase if the thickness of the adsorbed layer of the latter at the wall, l,

diverges – i.e. l → ∞ as µ → µsat.
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In Fig. 3.1 is displayed a typical density profile for a liquid wetting a planar wall located

at z = 0. For a planar structureless wall, the average density profile of the fluid in contact

with that wall, ρ(r), will depend only on the distance z from the wall, i.e. ρ(r) = ρ(z).

From the microscopic density profile we can calculate the Gibbs adsorption,

Γ =

∫ ∞

0
dz [ρ(z) − ρ(∞)]. (3.4.1)

Eq. (3.4.1) provides a link between any microscopic theory for the density profile, and the

surface thermodynamics (see Eq. (3.3.5)). The adsorbed film thickness l is proportional

to the adsorption at the wall, Γ, since when the adsorbed film thickness is large,

Γ ' l (ρl − ρg), (3.4.2)

where ρl and ρg are the coexisting liquid and gas densities. The adsorbed film thickness (or

equivalently the adsorption) is a good order parameter for describing wetting phenomena.

We shall pursue this idea in the next section.

3.5 Landau theory for wetting

In Sec. 3.2 we introduced some of the basic concepts associated with inhomogeneous

fluids within a simple Landau theory approach. We will now develop some of those ideas

further in order to introduce the subject of wetting and wetting transitions, and to derive

an expression for the excess surface grand potential as a function of the adsorbed film

thickness. This approach follows that of Ref. [10]. The approximate Landau free energy

used in Sec. 3.2, Eq. (3.1.2), describes two equilibrium coexisting bulk phases with order

parameter φ = ±φb, where φ2
b = −a/2b, and in each of the coexisting phases the bulk

correlation length ξ is the same, with ξ−2 = −4a/g. The grand potential per unit area for

an external potential with planar symmetry is given by Eq. (3.2.2). We are interested in

the case when the external potential is of the form:

V (z) =











∞ z < 0

V>(z) z ≥ 0.
(3.5.1)

We shall consider the case when the bulk phase z → ∞ is the gas phase, with order pa-

rameter φ = −φb, and the wall is wet by the coexisting liquid phase, with order parameter
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φ = φb. We shall focus on the excess grand potential per unit area which is given by (see

Eqs. (3.2.2) and (3.3.1)):

ωex =

∫ ∞

0
dz

[

a(φ2(z) − φ2
b) + b(φ4(z) − φ4

b) +
g

2

(

dφ(z)

dz

)2

+ V>(z)φ(z)

]

, (3.5.2)

when the fluid is at coexistence, i.e. the chemical potential µ = µsat. The order parameter

profile for z > 0 which minimizes Eq. (3.5.2) satisfies the Euler-Lagrange equation (3.2.3).

When V>(z) = 0, as we saw in Sec. 3.2, the order parameter profile is given by Eq. (3.2.4).

If V>(z) = εδ(z), i.e. a delta function, then the wall potential will provide a boundary

condition at z = 0 and the order parameter profile for z > 0 will be given by Eq. (3.2.4).

In this case we will write the excess grand potential as

ωex =

∫ ∞

0
dz

[

a(φ2(z) − φ2
b) + b(φ4(z) − φ4

b) +
g

2

(

dφ(z)

dz

)2
]

+ εφ(0) + cφ2(0).

(3.5.3)

The additional phenomenological term, cφ2(0), where c > 0 is a constant, is added to take

into account of the fact that the mean number of bonds between the particles located near

the wall is smaller than in the bulk [10]. The order parameter profile for z > 0 satisfies

the Euler-Lagrange equation

g
d2φ(z)

dz2
= 2aφ(z) + 4bφ3(z), (3.5.4)

which on integration with respect to φ yields:

g

2

(

dφ(z)

dz

)2

= a(φ2(z) − φ2
b) + b(φ4(z) − φ4

b). (3.5.5)

If we substitute this into Eq. (3.5.3) we obtain:

ωex =

∫ ∞

0
dz g

(

dφ(z)

dz

)2

+ εφ(0) + cφ2(0)

= g

∫ φ(∞)=−φb

φ(0)
dφ′

(

dφ′

dz

)

+ εφ(0) + cφ2(0). (3.5.6)

Since the set of order parameter profiles which satisfy the Euler-Lagrange equation (3.5.4),

are of the form: φ(z) = −φb tanh[(z − l)/2ξ], where l is yet to be determined, we will

assume this form, and we therefore find ∂φ/∂z = −(φ2
b − φ2)/2ξφb. Substituting this into

Eq. (3.5.6) and then performing the simple integration, we obtain

ωex =
g

2ξφb

[

2φ3
b

3
+ φ2

bφ(0) − φ3(0)

3

]

+ εφ(0) + cφ2(0). (3.5.7)
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When the interface between the wetting phase and the bulk phase is far from the wall

(l → ∞), then φ(0) = −φb tanh(−∞) = φb, the bulk value of the order parameter for the

wetting phase, and Eq. (3.5.7) yields

ωex(l → ∞) =
2gφ2

b

3ξ
+ εφb + cφ2

b . (3.5.8)

The first term on the right hand side of Eq. (3.5.8) is simply the excess grand potential per

unit area for the interface between the liquid and gas phases: the interfacial (gas-liquid)

surface tension γlg = 2gφ2
b/3ξ. The final two terms are the wall-liquid surface tension,

γwl = εφb + cφ2
b . We have arrived at the general result that when the wetting film is

(infinitely) thick then the wall-bulk-gas total surface tension,

ωex(l → ∞) ≡ γwg = γlg + γwl. (3.5.9)

This result can also be obtained from Young’s equation,

γwg = γwl + γlg cos θ (3.5.10)

by taking θ → 0, where θ is the contact angle. Young’s equation is obtained by a simple

mechanical argument: one considers a drop of liquid on a surface and by balancing the

forces at the contact line between the liquid-gas interface and the wall-liquid interface

one arrives at Young’s equation [11]. Returning to Eq. (3.5.7), when l (which has yet to

be determined) is large one can expand φ(0) = −φb tanh(−l/2ξ) in powers of exp(−l/ξ),

giving φ(0) = φb − 2φb exp(−l/ξ) + 2φb exp(−2l/ξ) − 2φb exp(−3l/ξ) + O(exp(−4l/ξ)).

Substituting this into Eq. (3.5.7) one obtains the following result for the excess grand

potential, when there is a wetting film of thickness l:

ωex(l) = γwl + γlg + A(T ) exp(−l/ξ) + B(T ) exp(−2l/ξ)

+ C(T ) exp(−3l/ξ) + O(exp(−4l/ξ)), (3.5.11)

where A(T ) = −2φb(2cφb + ε), B(T ) = 2φb(ε + 4cφb − gφb/ξ) and C(T ) = 2φb(8gφb/3ξ −
6cφb − ε). The form of Eq. (3.5.11) demonstrates an important idea in the physics of

liquids at interfaces: for fluids composed of particles interacting via short ranged pair

potentials wetting a wall, it is the tail of the liquid-gas interfacial profile, which decays

exponentially with decay length ξ, the bulk correlation length, interacting with the wall

which determines the wetting film thickness. In the present (Ising) Landau treatment

the bulk correlation length is the same in the two coexisting phases, however for a real
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fluid, where the bulk correlation length is not the same in the two coexisting phases, it is

the bulk correlation length in the phase wetting the wall, ξw, which should appear in the

exponential terms in Eq. (3.5.11).

3.6 Wetting transitions

A wetting transition is a surface phase transition which occurs for example on the wall

of a container which is enclosing a fluid. If the fluid in the container is in the gas phase

near to but above the boiling temperature, then the liquid phase can wet the walls of the

container, preceding the condensation in the bulk of the fluid. The wetting film grows in

thickness as the boiling temperature is approached while keeping the pressure, p, in the

bulk reservoir constant. This is not particularly surprising. However for some fluids there

is a wetting transition, i.e. depending on the pressure there can be a thick wetting film

adsorbed at the wall as bulk coexistence is approached, but for other (lower) pressures

the adsorbed film thickness remains finite. Thus along the coexistence line psat(T ) there

can be a transition from a thin to thick adsorbed layer. This transition can be either

first order or continuous [11]. Not all (model) fluids exhibit a wetting transition, but of

those that do, there are some that can display either a first order wetting transition or a

continuous one, depending on the form of the wall-fluid potential.

We can use Eq. (3.5.11) to understand the origin of wetting transitions [11]. Eq. (3.5.11)

was derived for the case when the bulk fluid is exactly at coexistence. The equilibrium

adsorbed film thickness leq is obtained by minimizing (3.5.11) with respect to l, i.e. leq is

the solution to
(

∂ωex(l)

∂l

)

l=leq

= 0. (3.6.1)

If the coefficients A(T ), B(T ) and C(T ) in (3.5.11) are all positive, which is the situation

one typically finds on the liquid-gas coexistence line near to the bulk critical point of the

fluid, then it is the leading order term, A(T ) exp(−l/ξ), which dominates the expression for

ωex(l) for a large film thickness l and the equilibrium film thickness obtained is leq = ∞,

i.e. the wall is wet by a macroscopically thick adsorbed film. However, if A(T ) < 0

and B(T ) > 0 in Eq. (3.5.11), which can occur as one moves to a point on the liquid-

gas coexistence line further away from the bulk critical point, then the equilibrium film

thickness obtained using Eqs. (3.5.11) and (3.6.1) is leq ' ξ ln[−2B(T )/A(T )] < ∞; the

adsorbed film thickness is finite. There is therefore a wetting transition between a thin (l is
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finite) and thick (l is infinite) adsorbed film, which occurs when A(T ) = 0. This transition

is continuous, i.e. as one moves along the liquid-gas coexistence line, starting in the low

temperature region, the thickness of the adsorbed film is finite in the low temperature

(A(T ) < 0) regime, but as we move along the coexistence line towards the critical point,

increasing in temperature, the film thickness l → ∞ continuously as A(T ) → 0, diverging

at the wetting temperature, Tw, at which A(Tw) = 0. In Fig. 3.2 (see also Fig. 3.2 in

Ref. [11]) we plot the excess surface grand potential ωex(l) as a function of l, for both

T > Tw and T < Tw, the wetting temperature. For T > Tw the minimum (equilibrium) is

at l = ∞, however for T < Tw there is a minimum at a finite value of l.

We have seen how a continuous (second order) wetting transition can occur. A first

order wetting transition is also possible. This can happen when the coefficients A(T ) and

C(T ) in Eq. (3.5.11) are both positive and when the coefficient B(T ) becomes sufficiently

negative. In Fig. 3.3 we plot (following Ref. [11]) the excess surface grand potential,

ωex(l), as a function of l for three different temperatures, T < T 1
w, T = T 1

w and T > T 1
w,

the wetting temperature for the first order transition. In this situation, if one moves

along the liquid-gas coexistence line towards the bulk fluid critical point, then for low

temperatures, T < T 1
w, the equilibrium adsorbed film thickness is finite. However at the

wetting temperature, T 1
w, the finite and infinitely thick film have equal grand potential

and the adsorbed film thickness jumps and becomes infinite, i.e. the film thickness diverges

discontinuously at T 1
w.

In all the discussion so far we have only considered the case when the bulk fluid is

at liquid-gas coexistence, with chemical potential µsat. This begs the question: what is

the equilibrium adsorbed film thickness when the the bulk fluid is off coexistence, i.e. the

bulk fluid has chemical potential (µsat − δµ), with δµ > 0? In this situation there will

be an extra term in Eq. (3.5.11) to take into account the fact that the bulk fluid is off-

coexistence. From Eq. (3.3.4) we can expect that when δµ is small, the additional term

in Eq. (3.5.11) will be Γδµ. Using Eq. (3.4.2), Eq. (3.5.11) becomes:

ωex(l) = γwl + γlg + l(ρl − ρg)δµ + A(T ) exp(−l/ξ)

+ B(T ) exp(−2l/ξ) + O(exp(−3l/ξ)). (3.6.2)

If one minimizes this expression with respect to the adsorbed film thickness, l, when

δµ 6= 0, the equilibrium adsorbed film thickness is always finite. For example, in the

regime where at coexistence (δµ = 0) the equilibrium film thickness leq = ∞, i.e. in the



3.6 Wetting transitions 29

l

ω ex
(l)

γwl+γlg

T>Tw

l

ω ex
(l)

γwl+γlg

T<Tw

leq

Figure 3.2: Plot of the excess surface grand potential per unit area ωex(l) at bulk coexis-

tence as a function of l, the adsorbed wetting film thickness, for both T > Tw and T < Tw,

the wetting temperature. When T > Tw the equilibrium adsorbed film thickness leq = ∞,

however when T < Tw one finds leq < ∞ is finite. As T → Tw, leq → ∞, this gives a

continuous wetting transition.
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Figure 3.3: The excess surface grand potential per unit area, ωex(l) at bulk coexistence

as a function of l, the adsorbed wetting film thickness, for three different temperatures,

T < T 1
w, T = T 1

w and T > T 1
w, the wetting temperature. When T < T 1

w the equilibrium

adsorbed film thickness leq is finite, whereas for T > T 1
w, leq = ∞. At T 1

w the equilibrium

wetting film thickness diverges discontinuously to infinity.
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regime where both A(T ) and B(T ) in Eq. (3.6.2) are positive, then one finds that for small

δµ, leq is given by

leq ' −ξ ln

(

ξ(ρl − ρg)δµ

A(T )

)

. (3.6.3)

Thus as one approaches coexistence at constant temperature, the adsorbed film thickness

diverges: l ∼ −ξ ln δµ. This result, which applies for fluids interacting via short ranged

pair potentials and short-ranged wall-fluid potentials, is not just a feature of the present

Landau treatment of wetting. The same result appears in more sophisticated (albeit still

mean-field) treatments, for example in DFT treatments of wetting [11].

When the wetting transition is first order we saw that there was a discontinuous jump

(divergence) in the adsorbed film thickness at the wetting transition. This jump also

manifests itself off-coexistence: For a first order wetting transition one finds a pre-wetting

line. This line starts at the wetting transition point, T = T 1
w, and extends away from the

liquid-gas coexistence line, ending in a critical point at a higher temperature Twcp > T 1
w.

If one considers a path approaching the liquid-gas coexistence line, at the point where

this path intersects the pre-wetting line the adsorption at the wall is discontinuous. The

adsorbed film thickness jumps from one finite value to another larger but finite value (both

values are finite since neither state points are on the bulk liquid-gas coexistence line). The

pre-wetting line is therefore a line of first order (thin-thick adsorbed film) surface phase

transitions. It meets the bulk coexistence line tangentially at T = T 1
w. In Fig. 3.4 (see also

Fig. 2.2 in Ref. [11]) we plot the adsorbed film thickness, leq, for three different paths (at

three temperatures), intersecting the liquid-gas coexistence line at chemical potential µsat.

In the inset is plotted a typical pre-wetting line (end-points marked with filled circles), on

the phase diagram for the fluid in the chemical potential-temperature, (µ, T ), plane. For

a temperature T < T 1
w, the wetting temperature, (path A) the adsorbed film thickness

remains finite right up to coexistence. On path B, intersecting the pre-wetting line, there

is a discontinuity in the adsorbed film thickness at the point where this path intersects the

pre-wetting line. On path B and on path C, at a temperature above Twcp, the pre-wetting

line critical point, the adsorbed film thickness diverges continuously as µ → µ−
sat.

Another issue we have not addressed in this introduction to wetting of fluids composed

of particles interacting via short ranged forces is what is the effect of wall potentials that

are not delta function-like, as we assumed so far? If we set the external potential in Eq.

(3.5.2) to be of the form V>(z) = εδ(z)+ ν exp(−z/λ), where λ is the wall potential decay
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Figure 3.4: The equilibrium film thickness leq for three different paths at three different

temperatures. The paths are marked in the fluid phase diagram in the inset. Path A is at

a temperature T < T 1
w, below the wetting temperature Tw. On this path the adsorbed film

thickness remains finite right up to coexistence. On path B, intersecting the pre-wetting

line (filled circles at the ends), the film thickness is discontinuous at the point where this

path intersects the pre-wetting line. On path B, leq → ∞ as µ → µ−
sat. On path C,

leq also diverges as µ → µ−
sat. However for this temperature, T > Twcp, above the pre-

wetting line critical point temperature, there is no jump at lower values of µ. Note that

for simplicity we have assumed that the bulk coexistence value of the chemical potential

µsat is independent of temperature.

length, this will add a term

νL−3

∫ ∞

0
dz exp(−z/λ)φ(z) (3.6.4)

to wex in Eq. (3.5.3). When the adsorbed wetting film thickness is large, then this will

just add terms ' Awall(T ) exp(−l/λ) + O(exp(−2l/λ)) to Eq. (3.6.2):

ωex(l) = γwl + γlg + l(ρl − ρg)δµ + A(T ) exp(−l/ξ) + B(T ) exp(−2l/ξ)

+ Awall(T ) exp(−l/λ) + O[exp(−3l/ξ), exp(−2l/λ)]. (3.6.5)

In this situation there are now three competing length scales, λ, ξ and ξ/2. This can affect

the type of wetting transition and can give rise to non-universal exponents for critical
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wetting [14, 15, 11]. The competing length scales can also influence how the wetting film

thickens as liquid-gas coexistence is approached. For example if λ > ξ, then the adsorbed

film thickness diverges as l ∼ −λ ln δµ, rather than with the prefactor to the logarithm

equal to ξ, which is the case in Eq. (3.6.3) [11]. If the wall potential decays faster than an

exponential, then when the adsorbed film thickness is sufficiently large, the exponential

terms in Eq. (3.6.2) will dominate any wall terms in ωex(l). However, if the wall potential

decays slower than exponential, the wall term will always dominate the terms in Eq. (3.6.2)

which are powers of exp(−l/ξ), and will determine the equilibrium adsorbed film thickness,

when l is large.

We should also mention the situation pertaining when the fluid particles interact via

pair potentials which decay algebraically such as the Lennard-Jones potential, which de-

cays ∼ r−6 as r → ∞. In this case the surface excess grand potential, Eq. (3.6.5), should

be replaced by

ωex(l) = γwl + γlg + l(ρl − ρg)δµ + A(T )l−σ + B(T )l−κ + .... (3.6.6)

where the indices σ and κ are determined by the power with which the fluid pair potentials

decay, and we have ordered σ < κ < .... As one might expect, if the wall potential also

decays algebraically, this can also add extra power law terms to Eq. (3.6.6) [11]. In the

situation where the excess grand potential is given by Eq. (3.6.6), then in the regime

where the liquid completely wets the wall, i.e. l → ∞ when δµ → 0, then the equilibrium

adsorbed film thickness diverges leq ∼ δµ−1/(σ+1) as δµ → 0 (c.f. Eq. (3.6.3)). Thus the

equilibrium film thickness divergence is a power law

leq ∼ δµ−βco
s , (3.6.7)

on approaching coexistence, where the critical exponent βco
s = (σ+1)−1, depends explicitly

on σ, the power of the leading term in l−1 in the surface excess grand potential (3.6.6).

For non-retarded van der Waals (dispersion) forces σ = 2 [11].

The surface excess grand potential, which can be either of the form (3.6.5) or (3.6.6),

is in general of the form [16]:

ωex(l) = γwl + γlg + γs(l, δµ), (3.6.8)

where γs is the extra contribution, which at coexistence, δµ → 0, and when there is

complete wetting, must vanish: γs → 0. γs has a ‘singular’ (non-analytic) contribution,
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γsing, for δµ → 0, approaching liquid-gas coexistence. For example, when there are short

ranged forces, then l ∼ − ln δµ. Substituting this result back into Eq. (3.6.5), we find that

γsing ∼ δµ ln δµ. For long-ranged forces we find that γsing has a power law dependence

on δµ. If one goes beyond the present mean-field approach, incorporating the effects

fluctuations in the wetting film interface, then in general

γsing ∼ δµ2−αco
s , (3.6.9)

where the value of the surface heat capacity exponent, αco
s , depends on the form of the

wall-fluid and fluid-fluid pair potentials, even within a mean-field calculation [11].

3.7 Incorporating fluctuations

In this section we shall describe how one begins to incorporate the effects of fluctuations

in a description of wetting phenomena. So far in this introduction to wetting all the

results presented have been mean-field in nature, i.e. we have calculated the equilibrium

position, leq, of the interface between the wetting film and the bulk fluid, but we have not

considered the effects of fluctuations of the interface. We can expect the location of the

interface to wander around leq due to thermal fluctuations – these are capillary waves. In

order to go beyond mean-field we can consider small fluctuations in the location l of the

interface between the wetting film and the bulk fluid. If we think of the interface between

the wetting film and the bulk fluid as a fluctuating membrane, then the work required to

produce a distortion in the height of the membrane, l(R), at position R in the membrane

(R is a two dimensional position vector in the plane of the interface) will be equal to the

change in surface area of the membrane times the interfacial surface tension, γlg. This will

contribute a term

∆F1 = γlg

∫

dR[
√

1 + (∇Rl(R))2 − 1], (3.7.1)

to the free energy. In addition to this term, since we are considering a state off-coexistence,

there will be a term due to the fact that the interface is bound to the wall. For small

fluctuations we can incorporate this if we Taylor expand the surface excess grand potential,

which in general is of the form (3.6.8), around its minimum value ωex(leq). One obtains

[10]:

ωex(l) ' ωex(leq) +
1

2
γlg ξ−2

‖ (l − leq)
2 (3.7.2)



3.7 Incorporating fluctuations 35

where

γlg ξ−2
‖ =

(

∂2ωex(l)

∂l2

)

l=leq

. (3.7.3)

The full interfacial free energy functional (or effective interfacial Hamiltonian) is thus

∆F =
1

2
γlg

∫

dR[(∇Rl)2 + ξ−2
‖ (l − leq)

2], (3.7.4)

where we have linearised the square root in the contribution from Eq. (3.7.1) and we have

ignored the constant ωex(leq). We consider the correlation function,

C(R) ≡ 〈 (l(R) − leq)(l(0) − leq) 〉 , (3.7.5)

which is the correlation function for fluctuations in the interface between the wetting film

and the bulk fluid. Since Eq. (3.7.4) has a similar form to Eq. (3.1.3) (the difference

between the two being the dimensionality of the order parameter) which was found to

generated a correlation function with the (classical) Ornstein-Zernike form (see Eqs. (3.1.4)

– (3.1.7)), it is not surprising that the Fourier transform of C(R) is

Ĉ(Q) ∼ 1

ξ−2
‖ + Q2

, (3.7.6)

and thus

C(R) ∼
∫

dR
exp(iQ.R)

ξ−2
‖ + Q2

. (3.7.7)

We can therefore identify ξ‖ as the correlation length for fluctuations in the plane of the

interface (one can also define ξ⊥, the interfacial thermal roughness). From Eq. (3.7.3)

we can see that as bulk coexistence is approached, δµ → 0, then leq → ∞ and therefore

ξ‖ → ∞ [10, 11]. The divergence of ξ‖ as δµ → 0 is a power-law:

ξ‖ ∼ δµ
−νco

‖ , (3.7.8)

where the critical exponent νco
‖ is dependent on the form with which the wall-fluid and

fluid-fluid pair potentials decay [10, 11]. If we want to go beyond the Gaussian approxi-

mation for the interfacial Hamiltonian, Eq. (3.7.4), we must consider the Hamiltonian (see

Ref. [16] and references therein):

H[l(R)] =

∫

dR

[

Σ

2
(∇Rl(R))2 + W (l(R))

]

, (3.7.9)

where Σ is the interfacial stiffness. To a first approximation Σ ' γlg, but in general Σ is

dependent on l. The binding potential W (l) ≡ ωex(l) − γwl − γlg (see Eq. (3.6.8)). One
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finds generally that in a renormalization group treatment of fluctuation effects in (3.7.9)

that the critical exponents βco
s , αco

s and νco
‖ can be altered from their mean-field values.

However, for complete wetting in 3 dimensions one finds that the critical exponent values

are unchanged by fluctuations but the critical amplitudes depend upon the value of the

dimensionless parameter

ω =
kBT

4πΣξ2
, (3.7.10)

which controls the strength of interfacial fluctuations [11, 16].

The exponents βco
s , αco

s and νco
‖ which characterize the approach to complete wetting

can be related to one another using the Gibbs adsorption equation (3.3.5), plus other

surface sum rules and scaling relations. This is analogous to methods used to derive the

relations between the exponents characterizing bulk critical phenomena [11, 16]. From the

Gibbs adsorption equation

1 − αco
s = −βco

s , (3.7.11)

while from a susceptibility sum rule [17, 16]

2νco
‖ = αco

s . (3.7.12)

There is also a surface hyperscaling relation

2 − αco
s = (d − 1)νco

‖ , (3.7.13)

where d is the dimensionality of the system. Within a mean-field treatment, for short

ranged forces, the critical exponents are:

αco
s = 1, βco

s = 0 (ln), νco
‖ =

1

2
(3.7.14)

in d = 3. There is also a set of (different) exponents characterizing the wetting transition

point, however these are beyond the scope of the present basic introduction to wetting,

and we refer the reader to the literature – see Refs. [11, 16, 18], and references therein.



Chapter 4

The One Component

Gaussian Core Model

The Gaussian core model (GCM) is a simple model for polymers in a good solvent. The

effective pair potential between the centers of mass of the polymers is modeled by a repulsive

Gaussian potential. In this chapter we provide a brief introduction to some of the existing

results for the structure and thermodynamics of this model fluid. Since the GCM pair

potential is purely repulsive, the one-component fluid does not exhibit liquid-gas phase

separation, however the GCM does freeze and we present a simple theory for the phase

diagram of the one-component GCM.

4.1 Introduction: effective interactions

The GCM consists of a set of classical particles each interacting with a repulsive pairwise

potential given by:

v(r) = ε exp(−r2/R2), (4.1.1)

where ε > 0 and R is a length scale determining the size of the particles. In the next

section we will describe briefly some simulation results which form the basis for viewing

the GCM as a simple model for polymers dissolved in an athermal solvent, with Eq.

(4.1.1) representing the effective interaction between the centers of mass of the individual

polymer chains. This ‘colloid’ approach to polymers [19, 20, 21] represents a significant

simplification in the description of a polymer solution. Formally one would calculate the

effective potential between the polymers by integrating over the internal (monomeric)

37
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degrees of freedom in the partition function, so that the partition function is in the form

of a trace over the Boltzmann factor of an effective Hamiltonian which is only a function

of the center of mass coordinates. In doing this, the effective Hamiltonian no longer

contains just pairwise terms, even when the underlying monomer-monomer interactions

are pairwise. In general the effective Hamiltonian is made up of a sum of terms, the first

of which does not depend on the polymer coordinates; the second is a one body quantity

which is a function of a single polymer coordinate; the third is a pairwise term, involving

pairs of the polymer center of mass coordinates; the fourth is a three-body term and so

on, with each successive term depending on increasing numbers of particle coordinates

[22, 23, 24]. This sum is often truncated at the pair terms in order to render the system

tractable. Although the GCM is not derived in such a manner, the Gaussian potential is

an approximation at the pairwise level for the effective interaction between the centers of

mass of the polymers in solution1.

4.2 A simple model for polymers in solution

When a polymer is in solution, each polymer chain is free to move around. If the solvent

is a poor solvent, i.e. when the attraction between the monomers, which make up the

polymer chain, is stronger than the attraction between the solvent molecules and the

monomers, then each polymer chain tends to collapse and to form a dense bundle, as it

minimizes the contact with the solvent. However in a good solvent, the polymer chain

opens up, to maximize the contact with the solvent molecules [22, 25]. In fact there is an

effective repulsion between the monomers of the polymer, and the chain statistics can be

well modeled by a self avoiding random walk. In a good solvent, each polymer chain can,

on a coarse grained length scale and on time scales greater that that associated with the

fluctuations of the polymer coils, be modeled as a ‘blob’, characterized by a mean position

(the center of mass of the polymer) and by a typical size, the radius of gyration – see Fig.

4.1. This is the view of polymer solutions that we shall take in this thesis.

A Gaussian effective potential for polymers was first proposed by Flory and Krigbaum

[26], and most recently, it this aspect of the model that has generated the most interest.

1One is not restricted to using the center of mass coordinates for the position of the polymer. One

could, for example, use the coordinates of the central monomer in the polymer chains. In fact this approach

is more fruitful for star-polymers – this is the approach we take in chapter 8.
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Figure 4.1: The ‘colloid’ approach to polymers in solution, where the interaction between

the polymer chains is modeled by an effective pair potential between the centers of mass.

In order to determine the effective potential between a pair of polymer chains, the early

(Monte-Carlo) simulation studies centered on the dilute regime, focusing on the effective

potential between an isolated pair of polymer chains. These studies include both lat-

tice simulations [27] and more realistic models such as the ‘pearl necklace model’ (hard

spheres connected by hard, freely rotating rods) [28, 29]. For a complete description of

the different simulation models used see Ref. [22] and references therein. In the study of

Dautenhahn and Hall [30] the authors use a square well potential to model the interaction

between the individual monomers. They find that the depth of the attractive well can

be changed to mimic the effect of the solvent quality: a more attractive well correspond-

ing to a poor quality solvent. The picture that emerges from these studies is that in an

athermal solvent, the effective potential between a pair of polymers is well represented by

the Gaussian form, Eq. (4.1.1) with ε ' 2kBT (kB is Boltzmann’s constant and T is the

temperature) and R roughly equal to the radius of gyration of the polymer2. However,

a more significant result to emerge from the most recent simulation study, of not just

two, but several chains, is that the Gaussian effective pair potential, Eq. (4.1.1), continues

to be a reasonable approximation even when the polymer concentration is such that the

polymers are overlapping [19, 20, 21, 34].

2A Gaussian effective pair potential also provides a good approximation for the interactions between

dendrimers in solution. However, for these more compact molecules, ε ' 8 − 10kBT [31, 32, 33].
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Figure 4.2: The radial distribution function, g(r), for the GCM with ε∗ = 2 calculated

using the quasi-exact (when compared with simulations) HNC closure to the OZ equation

(dashed line) and with the RPA closure (solid line). These are calculated for fluid densities

ρR3 = 0.5, 2, 4 and 6 (from bottom to top). Note that the RPA closure provides an

increasingly accurate approximation for g(r) as the density is increased. g(r) displays a

deep correlation hole, for r → 0, at the lower densities, but as ρR3 → ∞, then g(r) → 1

for all values of r.

4.3 Properties of the one-component GCM fluid

An excellent review of the properties of the GCM can be found in Ref. [22] but for com-

pleteness we shall mention some of the properties here. The GCM was introduced in the

mid-seventies by Stillinger [35], and was of interest because the GCM can yield a negative

thermal expansion coefficient in the liquid phase [36]. The phase behaviour of the GCM

is rather well established [22, 36, 37]; in the temperature-density (T, ρ) plane there is a

region below kBT/ε ' 0.01 where increasing ρ leads to freezing into a fcc phase, followed

by a fcc-bcc transition and then melting so that the fluid is stable at high densities. For

ε∗ ≡ βε < 100, where β = (kBT )−1, the fluid is stable at all densities. Recently Lang

et al. [37, 38] and Louis et al. [39] have studied the fluid region of the phase diagram

using Monte Carlo simulations and integral equation theories. What emerges is that for

high densities the hypernetted-chain (HNC) approximation provides an excellent account
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of the Monte Carlo results for the radial distribution function g(r), structure factor S(q)

and the equation of state and therefore the HNC approximation is viewed as being quasi-

exact for the GCM. In the limit ρR3 → ∞ it is argued that the HNC closure should

become exact [37, 38]. Particularly striking is the observation that a very simple closure,

the random phase approximation (RPA) which sets the pair direct correlation function

c(2)(r) = −βv(r), becomes very accurate for very high densities: ρR3 & 5 [37, 38, 39]3.

This implies that the GCM behaves as a ‘mean-field fluid’ over a very wide density and

temperature range. In Fig. 4.2 we plot the results for g(r) from the HNC and RPA clo-

sures to the OZ equation. One can see that as the density increases the correlation hole

at small values of r is reduced and g(r) → 1, for all separations of the particles. Such be-

haviour is very different from that of fluids with hard-cores, where short-ranged (packing

induced) correlations always persist [1]. For this soft-core model in the limit ρR3 → ∞,

the mean inter-particle separation ρ−1/3 becomes ¿ R and a central particle interacts

with a very large number of neighbours – a classic mean-field situation. However, for low

temperatures and densities, this picture does not hold, the particle interactions become

increasingly hard-sphere like as the temperature T → 0 and the correlation functions for

the GCM are well approximated by those of a hard-sphere fluid [22, 36]. The reason

for this behaviour is as follows: In the partition function the pair potential appears as a

Boltzmann factor. The Boltzmann factor of the GCM pair potential is

B(r, β) = exp[−βε exp(−r2/R2)]. (4.3.1)

B is a monotonic function of the interparticle distance r. The separation r∗ at which

B = 1
2 is

r∗(β) = R

√

ln

(

βε

ln 2

)

, (4.3.2)

and the gradient of the Boltzmann factor at this point is:

(

dB

dr

)

r=r∗
=

ln 2

R2
r∗(β), (4.3.3)

so as β → ∞, both r∗ and (dB/dr)r=r∗ diverge; i.e. the Gaussian particles behave more

and more like hard-spheres as the temperature is decreased, with an effective hard-sphere

radius equal to r∗ [22, 36]. This argument, of course, only applies in the regime where the

3By making comparison with simulations C.N. Likos et al. [38] have established the validity of the RPA

at high densities for bounded, positive definite pair potentials in general.
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Figure 4.3: The radial distribution function, g(r), calculated using the HNC closure to the

OZ equation for a GCM fluid with density ρR3 = 0.1 at a temperature kBT/ε = 0.01 (solid

line) and at kBT/ε = 0.5 (dashed line). Note that g(r) at low temperatures resembles that

of a hard-sphere fluid, whereas at higher temperatures g(r) is completely different and is

much less structured.

GCM fluid density is less than that at which hard-spheres of radius r∗ close pack. In Fig.

4.3 we display the radial distribution function, g(r), calculated using the HNC closure to

the OZ equation for a GCM fluid with density ρR3 = 0.1 at a temperature kBT/ε = 0.01

(solid line) and at kBT/ε = 0.5 (dashed line). In the low temperature and density regime

g(r) is much more structured; the fluid is near to freezing and g(r) is similar to that for

a hard-sphere fluid. However at higher densities and/or temperatures, the particle cores

overlap and g(r) is much less structured. It is in this overlap regime that the RPA is a

good approximation to make for the fluid correlation functions.

Since the RPA is accurate over such a large range of bulk densities it is tempting to

argue [22, 37, 39] that the simple mean-field Helmholtz free energy functional, Eq. (2.3.25),

should yield a realistic description of the inhomogeneous GCM fluid, provided the one-body

density ρ(r) does not acquire very small values. The density functional (2.3.25) generates

the RPA: c(2)(r) = −βv(r). Physically one is arguing that the excess (over the ideal gas

Fid) free energy of the fluid can be approximated by the internal energy with the pairwise
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distribution function ρ(2)(r1, r2) replaced by its uncorrelated limit ρ(r1)ρ(r2). Louis et al.

used the functional (2.3.25) to investigate the density profiles of GCM particles adsorbed

at a hard wall. Their results agree closely with results from Monte Carlo simulations and

with the results from the HNC DFT [39, 7] for the GCM with ε∗ = 2, both for a hard

planar wall (i.e. the wall potential Vext(z) = ∞ for z < 0 and Vext(z) = 0 for z > 0)

and also for an external potential of the form βVext = exp(−z)/z, at three bulk densities

ρR3 = 1, 0.5, 0.1, confirming that the GCM does behave as a ‘mean-field fluid’ – at least

for this type of inhomogeneity [39].

4.4 Solid phases of the GCM

By performing lattice sums to determine the free energy for candidate solid phases of

the GCM, and by molecular dynamics simulations, Stillinger and co-workers were able to

determine the form of the GCM phase diagram [35, 36, 40, 41, 42, 43]. They found that

there are two equilibrium solid phases: fcc at lower densities and bcc at higher densities.

They also established a novel feature of the GCM: that the solid undergoes re-entrant

melting, i.e. if one fixes the temperature, for example choose kBT/ε = 0.004, then as one

increases the density, the fluid first freezes, but then as the density is further increased the

crystal melts again and there are no further freezing transitions. This scenario is particular

to some soft core systems, where the equilibrium phase at high densities is a liquid, rather

than a solid. Note also that a solid with multiple occupancies on each lattice site is not

the equilibrium phase for the GCM.

More recently Lang et al. [37] used a different method for calculating the GCM phase

diagram. They adopted an Einstein-model approach [44], based on the Gibbs-Bogoliubov

inequality, which relates the Helmholtz free energy F of a system with Hamiltonian H, to

that of a reference system, F0, with Hamiltonian H0:

F ≤ F0 + 〈H − H0〉0 . (4.4.1)

For the reference system, Lang et al. [37] used the Einstein model of a solid, which has

the following Hamiltonian:

H0 =
N

∑

i=1

[

p2
i

2m
+ α(ri − Ri)

2

]

, (4.4.2)

where i labels the particles, each of which has mass m, position ri and momentum pi. Each

particle is bound by a harmonic potential to a lattice site at Ri. The ‘spring constant’
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α for the harmonic potential is treated as a variational parameter. The Helmholtz free

energy for the Einstein solid is simply (see Appendix A)

F0 = 3NkBT ln

(

φΛ√
πR

)

(4.4.3)

where the dimensionless parameter

φ =
√

βαR2 (4.4.4)

and F0 is, of course, independent of the length scale R. Within the Einstein model the

one body density is simply a sum of Gaussian profiles, each centered on the lattice sites:

ρE(r) =
∑

i

φ3

π3/2R3
e−φ2|r−Ri|

2/R2

, (4.4.5)

and the two-body density is a sum of products of Gaussians:

ρ
(2)
E (r, r′) =

∑

i6=j

φ6

π3R6
e−φ2|r−Ri|

2/R2

e−φ2|r′−Rj |
2/R2

. (4.4.6)

From the Gibbs-Bogoliubov inequality (4.4.1) one obtains the following upper bound for

the Helmholtz free energy [1, 44]

F ≤ F0 +
1

2

∫

dr

∫

dr′ ρ
(2)
E (r, r′)v(|r − r′|) − 3

2
NkBT. (4.4.7)

The final term is obtained simply by applying the equipartition theorem for the three

potential energy (configurational) degrees of freedom in reference Hamiltonian (4.4.2). On

substituting Eq. (4.4.6) into (4.4.7), one can perform the simple integrals, since the GCM

pair potential v(r) in Eq. (4.4.7) is a Gaussian, and one obtains:

F ≤ F̃ ≡ F0 +
Nεφ3

2(φ2 + 2)3/2

∑

ν

mν exp

(

− a2
ν

R2(1 + 2/φ2)

)

− 3

2
NkBT, (4.4.8)

where the index ν denotes a sum over lattice vectors aν = Ri − Rj , with magnitude

|aν | = aν . mν is an integer denoting the number of lattice vectors of length aν belonging

to a shell. The only parameter in Eq. (4.4.8) is the width parameter φ of the Gaussian

density peaks, which is treated as a variational parameter, to be determined from the

minimization condition ∂F̃ /∂φ = 0, and one assumes that F = minF̃ . One can therefore

calculate the Helmholtz free energy for any trial crystal structure; one simply inputs the

sets of mν and aν(ρ) for the particular lattice structure into Eq. (4.4.8) and then minimizes

with respect to φ. Lang et al. [37] calculated the free energy for various crystal structures
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Figure 4.4: The phase diagram for the one component GCM calculated by Lang et al. [37]

(taken with kind permission), plotted in the reduced temperature t = kBT/ε versus density

ρ plane (note: σ ≡ R). The two insets (a) and (b) show details of the phase diagram. The

low density equilibrium solid phase is the fcc crystal, and at higher densities it is the bcc

crystal. On increasing the temperature or the density, the fluid is the equilibrium phase.

and found, as one would expect based on the results of Stillinger and co-workers [35], that

the only equilibrium crystal phases for the GCM were those with the fcc and bcc lattices.

In order to calculate the fluid free energy Lang et al. [37] used the HNC virial route.

In order to implement this approach one uses the HNC closure to the OZ equation to

calculate the radial distribution function for the fluid, g(r), along a path at constant

temperature in the phase diagram, starting from the point with density ρ = 0 and ending

at the point with density ρ in the phase diagram, where the fluid free energy is required.

One then inputs the HNC g(r) to the virial equation (2.1.16) to calculate the pressure

of the fluid, P . By integrating the thermodynamic relation P = −(∂F/∂V )T along the

path in the phase diagram, one can determine the fluid free energy Ffluid(ρ). In order to

calculate the coexisting densities between any two phases (either the fluid, or the bcc and

fcc solid phases) the common-tangent construction was performed between the Ffluid/V

and Fsolid/V curves. Their resulting phase diagram is displayed in Fig. 4.4. Note that the

thermodynamic state point of the fluid or solid is completely determined by the average

density of the system 〈ρ(r)〉 = ρ = N/V and by the reduced temperature kBT/ε. The low

density equilibrium solid phase is the fcc crystal, and at higher densities, ρR3 & 0.17, it is
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the bcc crystal that is the equilibrium solid phase. On increasing the temperature or the

density, the fluid is the equilibrium phase. The difference in density between the coexisting

phases are all relatively small – see the insets to Fig. 4.4. For example the difference in

density between the coexisting fcc and bcc solid phases is independent of temperature,

(ρbcc − ρfcc)R
3 = 3.6 × 10−4 [37].

4.5 DFT theory for the solid phases of the GCM

Here we present a simple alternative (DFT) method for determining an approximate phase

diagram for the one component GCM. The RPA excess Helmholtz free energy functional

F [ρ] = Fid[ρ] +
1

2

∫

dr

∫

dr′ ρ(r) ρ(r′)v(|r − r′|), (4.5.1)

where the ideal gas part of the free energy functional is

Fid[ρ] = kBT

∫

dr ρ(r) [ln(Λ3ρ(r)) − 1], (4.5.2)

provides an accurate approximation for the fluid free energy when the fluid is at temper-

atures and densities such that the soft cores of the particles are overlapping. However, as

we have seen, the RPA functional generates correlation functions which fail to describe

correctly the correlations in the fluid when it is near to freezing. The approximation lead-

ing to Eq. (4.5.1) assumes that there are multiple overlaps between the particles. However,

in the regime where the particles freeze the repulsion between the GCM particles is suf-

ficient for the correlations between the particles to be better approximated by particles

with hard (impenetrable) cores – see Fig. 4.3. We therefore expect Eq. (4.5.1) to provide

a poor approximation to the free energy of the GCM liquid in this region of the phase

diagram. However, perhaps surprisingly, we find that an RPA-like approximation provides

a good approximation for the Helmholtz free energy of the solid phases.

When in the fluid state, the one-body density is a constant, ρ(r) = ρ. However,

when the system freezes into a solid, the density is periodic, i.e. the symmetry breaks and

ρ(r) = ρ(r−Ri), where Ri is a lattice vector for the solid phase. An approximation that is

often made in DFT studies of freezing [45, 22], is to assume that the density profile of the

solid is made up of Gaussian peaks, of the form in Eq. (4.4.5). This density profile assumes

a normalization condition: i.e. there is one particle per lattice site. This assumption need

not necessarily be true. We can expect to find vacancies in the crystal, and indeed for the
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present soft core system we may find another type of defect: double occupancy, since the

particle cores can overlap. However, we expect the proportion of defects to be small, and

assume therefore a perfect crystal. In fact, at high densities, where there is a tendency

towards double occupancy, we find that for the present soft core system there is re-entrant

melting: at high densities the fluid is the stable phase rather than a multiple occupied

solid.

If we assume the crystal density is of the form given by Eq. (4.4.5), with φ taking a value

sufficiently large that the overlap between the Gaussian density peaks on neighbouring

lattice sites can be assumed to be negligible, then the ideal gas part of the Helmholtz free

energy, Eq. (4.5.2), is simply

F solid
id (ρ, φ) = NkBT

[

3 ln

(

Λφ√
πR

)

− 5

2

]

, (4.5.3)

which is independent of R. It is interesting to note that this differs from the free energy

of the Einstein solid, Eq. (4.4.3), solely by a (φ independent) amount, 5
2NkBT , this is

discussed further in Appendix A. We approximate the mean-field Helmholtz free energy

by:

F (ρ) = F solid
id (ρ, φ) +

φ6

2π3R6

∑

i6=j

∫

dr

∫

dr′ e−φ2|r−Ri|
2/R2

e−φ2|r′−Rj |
2/R2

v(|r − r′|).

(4.5.4)

Note that this result is not exactly that which would arise from inserting the profile Eq.

(4.4.5) into the RPA functional Eq. (4.5.1); we have omitted from the sum over lattice

sites all the terms where the index i = j. The result can be viewed as an RPA-like

approximation derived from Eq. (2.3.24) by assuming that the two body density is of the

form in Eq. (4.4.6) for all values of the charging parameter α in Eq. (2.3.24).

The integrals in Eq. (4.5.4) are exactly the same as those in Eq. (4.4.7), and so we

obtain:

Fsolid(ρ, φ) = F solid
id (ρ, φ) +

Nεφ3

2(φ2 + 2)3/2

∑

ν

mν exp

(

− a2
ν

R2(1 + 2/φ2)

)

. (4.5.5)

This expression is almost the same as that obtained in the previous section using a theory

based on the Einstein model for the free energy of the solid phases, except the expression

in Eq. (4.4.8) and that in Eq. (4.5.5) differ by NkBT . This difference originates from the

presence of the 1/N ! indistinguishability factor in the partition function that formed the

(liquid state theory) basis for Eqs. (4.5.1) and (4.5.2), from which Eq. (4.5.5) is derived.
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By contrast, in the Einstein model the particles are fixed to the lattice sites and are

therefore distinguishable – see Appendix A for a more detailed discussion of these issues.

However, for our present purposes this (φ independent) difference has no effect, because in

the present approach all solid phases have this additional term, and we use a Lindemann

criterion to calculate the solid melting curves, rather than compare our solid free energy

with that of the liquid, which is the situation in which this term would matter.

We approximate Eq. (4.5.5) by truncating the sum over lattice vectors to a sum over

nearest neighbours and next nearest neighbours only. The only parameter in Eq. (4.5.5)

is the width of the Gaussian density peaks φ and, as in the previous section, we treat this

as a variational parameter, determined from the minimization condition ∂Fsolid/∂φ = 0.

Based on information from earlier studies [22, 36, 37] for the phase diagram of the GCM,

we calculated only the free energy for the bcc and fcc crystal structures. Some typical

plots of the free energy as a function of φ are displayed in Fig. 4.5. We find that the free

energy always has a minimum at φ = 0, this corresponds to the fluid state, where the

particles are completely delocalized. However, for some points in the phase diagram the

free energy has a second minimum at some other (non-zero) value of φ, and this is the

value we use to calculate the free energy.

The usual procedure for determining the phase diagram, once the free energy density

for all the trial phases has been calculated, is to perform the common tangent construction

(which is equivalent to equating chemical potentials and pressures in the coexisting phases)

in order to find the coexisting state points between the different phases. We find, as did

Lang et al. [37], that the free energy for the fcc solid is lower than that for the bcc at

low densities (ρR3 . 0.16). We could therefore perform the common tangent construction

between these two free energies and determine the coexisting densities. However, due to

the soft core nature of the present system, the density change at the transition is very small

– see the inset to Fig. 4.4 and Ref. [37], and since we are mostly interested in providing a

simple theory which accounts for the topology of the phase diagram, we simply determined

the density at which the Helmholtz free energy of the bcc equals that of the fcc structure

for a given temperature. The resulting line is plotted in Fig. 4.6.

In order to calculate the fluid-solid coexistence we should calculate the fluid Helmholtz

free energy density and perform the common tangent construction between this and the

solid phase free energy. However, the integral equation procedure used by Lang et al. [37]

is numerically intensive, and at the low temperatures and densities at which the GCM
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Figure 4.5: The Helmholtz free energy (in arbitrary units) for an fcc lattice as a function

of φ, the localization parameter. Results are calculated at ρR3 = 0.12 and kBT/ε = 0.004

(labeled A), at ρR3 = 0.04 and kBT/ε = 0.004 (B) and at ρR3 = 0.7 and kBT/ε = 0.01

(C). Note that C is multiplied by a factor 10−1. A has a minimum at φ = 6.63, B a

minimum at φ = 1.89 and for C there is no minimum at all (except the trivial minimum

at φ = 0 which denotes a solution where the particles are completely delocalized). A is

calculated at a state point inside the region where we expect the fcc to be the equilibrium

phase, whereas B and C correspond to points where the fluid is the equilibrium phase.

freezes, we are unable to use the RPA Helmholtz free energy, since it provides a very poor

estimate for the free energy of the fluid in this region of the phase diagram. It greatly

over estimates the fluid free energy.

Here we will use a different method to determine the melting temperature of the solid,

namely the Lindemann criterion: the crystal melts when the ratio of the root-mean-square

displacement, σ ≡ (
〈

r2
〉

−〈r〉2)1/2, of the particle about its equilibrium position is roughly

10% of the nearest neighbour distance, a1. This is simple to implement for the Gaussian

profile, Eq. (4.5.5) which gives σ =
√

3
2(R

φ ). For the fcc crystal afcc
1 = 21/6ρ−1/3, and

we choose the (somewhat arbitrary)4 Lindemann criterion for when the fcc melts to be

4In Ref. [43], Stillinger and Weber used molecular dynamics simulations to determine the temperature

when the GCM fluid with density ρR3 = 0.2 melts. Their Lindemann ratio was σ/a1 = 0.16. This value
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Figure 4.6: The phase diagram of the one component GCM. Rather than calculate the

phase boundaries by performing the common tangent construction between the free energy

densities of the competing solid phases, the fcc-bcc transition line is given by the locus

of points where the Helmholtz free energies of the two phases are equal. The melting

boundaries are determined using the Lindemann criterion – see the text.

φafcc
1 /R = 12.2 (i.e. when σ/afcc

1 = 0.100). Similarly for bcc abcc
1 = 2−2/3

√
3ρ−1/3 and we

choose the Lindemann criterion for when the bcc melts to be φabcc
1 /R = 11.8 (i.e. when

σ/abcc
1 = 0.104). This second (slightly different) value for the bcc Lindemann criterion is

chosen so that the melting lines for the bcc and fcc phases form a continuous boundary line

between the fluid and solid phases. The plot of the resulting phase diagram is displayed

in Fig. 4.6. Remarkably, all the transitions in Fig. 4.6 are located within 20% of the

locations found in the more sophisticated approach of Lang et al. [37] – see Fig. 4.4. The

main difference between Fig. 4.6, and the more accurate phase diagram in Fig. 4.4 is in

the location of the bcc-solid melting transition line. This is because as the GCM density

increases our approximation of truncating the sum over lattice vectors after nearest and

next nearest neighbour contributions only in Eq. (4.5.5), becomes increasingly inaccurate.

is larger than the criterion we use here. Within the present theory there is not always a minimum of Eq.

(4.5.5) for σ/a1 = 0.16. It is well known that DFT theories for solids often under-estimate the value of the

Lindemann ratio [46].
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This can be seen particularly in the tail of the fluid-bcc boundary for densities ρR3 > 0.6.

In order to improve the theory one should include further terms in the sum in Eq. (4.5.5).

However, our main purpose in truncating the sum was to construct a simple theory and

also to demonstrate that it is the nearest and next nearest neighbour contributions in Eq.

(4.5.5) which dominate this expression for the Helmholtz free energy of the solid phases

of the GCM. Another criterion that we used for determining the melting curves was to

calculate the locus of points where there is no longer a solution φ 6= 0 to the equation

∂Fsolid/∂φ = 0, still using Eq. (4.5.5) to determine Fsolid. This results in a phase diagram

with the same topology as Fig. 4.6, but is, of course, a much less accurate method than

that based on the Lindemann criterion.

Having given a brief overview of some of the properties of a one component fluid of

GCM particles, in the next chapter we shall describe some of the properties of a binary

fluid of GCM particles, the main topic of this thesis.





Chapter 5

The Binary Gaussian Core Model:

Fluid-Fluid Phase Separation and

Interfacial Properties

Using a mean-field equation of state we calculate the density-concentration phase diagrams

for a binary mixture of repulsive Gaussian core particles over a range of size ratios. A

simple RPA mean-field DFT approach is used to calculate the surface tension and den-

sity profiles of the interface between the demixed fluid phases of the binary mixture. For

certain coexisting states oscillations are found in the density profiles on both sides of the

interface, i.e. approaching both bulk phases. The form of the oscillations is determined by

the asymptotic decay of the bulk total pairwise correlations and the onset of oscillations in

the interfacial density profiles is linked to the location of the crossover line (Fisher-Widom

line) in the bulk phase diagram where the asymptotic decay changes from monotonic to

damped oscillatory. For certain particle size ratios we find a new crossover line which

separates a region of the phase diagram where the longest range decay of the pairwise

correlations is damped oscillatory from a region where the longest range decay is damped

oscillatory but with a different wavelength. We argue that many of the predictions of the

simple DFT approach should remain valid in more refined treatments.

Given the success of the simple mean-field RPA Helmholtz free energy functional

(2.3.25) in describing the pure fluid it is natural to ask what the corresponding theory

yields for a binary mixture of repulsive Gaussian core particles. This question was ad-

dressed partially in Refs. [39, 47] and the authors showed that for certain choices of the

53
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energy and range parameters fluid-fluid demixing is predicted by the mean-field (RPA)

approach. Although it is not clear that this phase separation mimics that which is found

in polymer blends [39], the observation that a system with purely repulsive inter-particle

potentials can separate into two fluid phases is of intrinsic interest. Recall that the pure

GCM exhibits only a single fluid phase.

5.1 Demixing in binary fluids

Before considering demixing in binary fluids, we shall remind the reader about phase

separation in one-component fluids. A simple one-component fluid can separate into two

coexisting phases, a liquid and a gas. For these two phases to coexist the chemical potential

µ and the pressure P must be equal in the two phases – i.e. the two phases must be in

chemical and mechanical equilibrium. In any theory for a fluid, phase separation manifests

itself as a convex portion in the Helmholtz free energy curve, i.e. the free energy per particle

f = F/N , as a function of the volume per particle v = V/N has a convex portion. If f(v) is

convex, then the fluid with density ρ = 1/v, will be unstable to density fluctuations, since

in this region the isothermal compressibility χT , given by Eq. (2.1.14), will be negative.

The boundary to this unstable region is the spinodal and is defined as the locus of points

where χ−1
T = 0, i.e. where

∂2f

∂v2
= 0. (5.1.1)

One finds that the two points on the curve f(v), corresponding to the coexisting liquid

and gas, are outside the unstable region, one either side. These points are determined as

follows: The pressure in the fluid is given by

P (v) = −
(

∂F

∂V

)

N

= −
(

∂f

∂v

)

(5.1.2)

and the chemical potential

µ(v) =

(

∂F

∂N

)

V

= f(v) − v

(

∂f

∂v

)

. (5.1.3)

If the densities of the coexisting liquid and gas phases are v−1
l and v−1

g respectively, then

from the conditions of mechanical equilibrium P (vl) = P (vg) and of chemical equilibrium

µ(vl) = µ(vg) one obtains:

∂f

∂v

∣

∣

∣

∣

∣

vl

=
∂f

∂v

∣

∣

∣

∣

∣

vg

=
f(vl) − f(vg)

vl − vg
, (5.1.4)
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which geometrically corresponds to the common tangent construction on the curve f(v).

The locus of points in the phase diagram defined by (5.1.4) is known as the binodal. The

binodal meets the spinodal at a single point (temperature), the bulk critical point. This

is the only point in the fluid phase diagram where there is an equilibrium phase with the

compressibility χT = ∞.

Extending the above ideas to a binary fluid is now straight-forward. A fluid composed

of two different species of particles (labeled 1 and 2) can separate into two demixed phases,

A and B, one rich in species 1 and the other poor in species 1. For phases A and B to be

in equilibrium, the chemical potentials µi and the pressure P of the two phases must be

equal, i.e. µi,A = µi,B for i = 1, 2 and PA = PB. The variables we work with are the total

density ρ and a composition variable x, such that the bulk densities of the two species are

ρb
1 = (1 − x)ρ and ρb

2 = xρ. In terms of v = 1/ρ, the volume per particle, the chemical

potentials and pressure are:

µ1 = f − v

(

∂f

∂v

)

x

− x

(

∂f

∂x

)

v

(5.1.5)

µ2 = f − v

(

∂f

∂v

)

x

+ (1 − x)

(

∂f

∂x

)

v

(5.1.6)

P = −
(

∂f

∂v

)

x

. (5.1.7)

The calculation of the binodal is simpler to perform in the ensemble where the pressure is

the independent variable instead of the total density ρ = 1/v. We Legendre transform to

g = f + Pv where g(x, P ) is the Gibbs free energy per particle. In this ensemble the con-

ditions of equal chemical potential and pressure lead to the common tangent construction

on g:
(

∂g

∂x

)

P

∣

∣

∣

∣

∣

xA

=

(

∂g

∂x

)

P

∣

∣

∣

∣

∣

xB

=
g(xA, P ) − g(xB, P )

xA − xB
(5.1.8)

where xA and xB are the concentrations of species 2 in phases A and B respectively. The

spinodal is now the locus of points at which

(

∂2g

∂x2

)

P

= 0. (5.1.9)

Note that all derivatives are performed at constant temperature T .
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5.2 The model mixture and its phase diagram

The GCM binary mixture is specified by the pair potentials between particle species i and

j. These are given by the two component generalisation of Eq. (4.1.1):

vij(r) = εij exp(−r2/R2
ij) (5.2.1)

where εij > 0 denotes the energy and Rij determines the range of the ij interaction;

1 ≤ i, j ≤ 2. Thinking of the particles as representing polymers, Rii is roughly the radius

of gyration of species i.

We use the multicomponent generalisation of Eq. (2.3.25) for the intrinsic Helmholtz

free energy functional of the inhomogeneous mixture:

F [{ρi}] = Fid[{ρi}] +
1

2

∑

ij

∫

dr1

∫

dr2 ρi(r1) ρj (r2) vij(|r1 − r2|) (5.2.2)

where

Fid[{ρi}] =
1

β

∑

i

∫

dr ρi(r) [ln(Λ3
i ρi(r)) − 1], (5.2.3)

is the ideal gas part of the free energy functional. Recalling that the two-body direct

correlation functions are given by (see Eq. (2.3.16))

c
(2)
ij (r1, r2) = −βδ2(F [{ρi}] −Fid[{ρi}])

δρi(r1)δρj (r2)
(5.2.4)

it follows that

c
(2)
ij (r1, r2) = c

(2)
ij (|r1 − r2|) = −βvij(|r1 − r2|) (5.2.5)

which is the random phase approximation (RPA) for the mixture. In the bulk mixture

the densities are constants, ρi(r) = ρb
i . Writing these in terms of the total density ρ and

the concentration of species 2, x, we can write the bulk Helmholtz free energy per particle

f , as [39]

f(ρ, x) = fid(ρ, x) +
1

2
ρV̂0(x) (5.2.6)

βfid contains the ideal free energy of mixing, x ln(x) + (1 − x) ln(1 − x) as well as an

irrelevant ρ dependent term. The mean field interaction term is

V̂0(x) = (1 − x)2v̂11(0) + 2x(1 − x)v̂12(0) + x2v̂22(0) (5.2.7)

where v̂ij(0) is the q = 0 limit of the Fourier transform (FT) of the pair potential (theˆ

denotes a FT with respect to wave vector q):

v̂ij(0) =

∫

drvij(r) = π3/2εijR
3
ij (5.2.8)
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Since the free energy (5.2.6) has the simple mean-field form the thermodynamic stability

conditions for the binary mixture also take a very simple form and Louis et al. [39] showed

that fluid-fluid phase separation is possible at constant volume provided

β−1χ ≡ 2v̂12(0) − [v̂11(0) + v̂22(0)] > 0 (5.2.9)

or at constant pressure provided

β−2∆ ≡ [v̂12(0)]2 − v̂11(0)v̂22(0) > 0. (5.2.10)

This condition is obtained when we calculate the spinodal from (5.2.6) and (5.1.9). Within

the present simple mean-field approximation the density along the spinodal can be deter-

mined analytically [39]:

ρs(x) =
V̂1(x) +

√

V̂1(x)2 + 4x(1 − x)∆

2x(1 − x)∆
(5.2.11)

where

V̂1(x) = (1 − x)βv̂11(0) + xβv̂22(0). (5.2.12)

In order to observe phase separation we must choose parameters εij and Rij so that these

conditions are satisfied. The choice of parameters can be restricted further by making

contact with simulation studies of binary solutions of self-avoiding polymer coils at infinite

dilution [30] in which it was suggested that the effective potentials between the polymer

centers of mass could be modeled quite well by the GCM, defined by Eq. (5.2.1), with

ε12 ≤ ε11 = ε22 (5.2.13)

and

R2
12 =

1

2
(R2

11 + R2
22). (5.2.14)

Relation (5.2.13), which reflects the fact that the energy penalty is lower for smaller

polymers to sit inside the coils of a larger one than if they are of the same size, clearly

favours mixing; the energy penalty is lower if unlike species are neighbours. It is relation

(5.2.14) that favours demixing since it implies R12 > (R11 +R22)/2, which corresponds to

positive non-additivity, known to drive demixing in hard sphere mixtures [48].

The majority of our calculations for interfacial properties will be for a mixture with

βε11 ≡ ε∗11 = ε∗22 = 2, ε∗12 = 1.888, R22/R11 = 0.665 and R12 given by Eq. (5.2.14).

(Henceforward we use R11, the radius of gyration of the longer polymer, as the length
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Figure 5.1: The bulk phase diagram for a binary mixture of Gaussian particles with

ε12/ε11 = 0.944 and R22/R11 = 0.665 which is equivalent to a mixture of two polymers

with length ratio 2:1. ρ is the total density and x is the concentration of the smaller

species 2. The gray lines are lines of constant pressure; the lowest is at reduced pressure

PβR3
11 = 100, the next at PβR3

11 = 150, then 200 and the subsequent ones increase in

increments of 100. The points marked A-F are the points where the gray lines intersect

the binodal (solid line). The density profiles for the corresponding fluid-fluid interfaces

are shown in Fig. 5.6. The dashed line denotes the Fisher-Widom (FW) line where the

asymptotic decay of the bulk pairwise correlation functions crosses over from oscillatory

to monotonic. The solid line in the bottom right corner denotes a new line of crossover

from asymptotic oscillatory decay with a certain wavelength to a similar oscillatory decay

but with a different wavelength – see section 5.4.
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Figure 5.2: As in Fig. 5.1 but now ε12/ε11 = 0.825 and R22/R11 = 0.524 which is equiv-

alent to a mixture of two polymers with length ratio 3:1. The gray lines are lines of

constant pressure; the lowest is at reduced pressure PβR3
11 = 100 and the others increase

in increments of 100. The right hand branch of the FW line (dashed line) lies close to the

x = 1 axis but the solid line in the bottom right corner denoting oscillatory-oscillatory

crossover is still present for these parameters.

scale in our analysis.) This choice of parameters was motivated by the study of Louis

et al. [39] where the Rij were chosen to model a mixture of self-avoiding polymers with

L = 200 (species 1) and L = 100 (species 2) monomers. The radius of gyration Rg ∼ Lν ,

where ν ' 0.588 is the Flory exponent.

For ε∗ = 2 the pure GCM remains fluid for all densities – see Fig. 4.4. If the mixture

is treated within the present mean-field approximation the temperature scales out of the

free-energy in Eq. (5.2.6) and the phase behaviour is that of an athermal system [39],

depending only on the ratios ε12/ε11 and R22/R11. We chose ε12/ε11 so that the critical

point of the fluid-fluid demixing was the same as that in the mixture considered in Ref.

[39], i.e. at xc = 0.70, ρcR
3
11 = 5.6. In Fig. 5.1 we plot the phase diagram for this particular

choice of parameters. The spinodal (dash-dot line) and binodal (solid line) are obtained

as described in section 5.1.

The gray lines in Fig. 5.1 denote lines of constant pressure in the (ρ, x) phase diagram.
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Figure 5.3: As in Fig. 5.1 but now ε12/ε11 = 0.70 and R22/R11 = 0.388 which is equivalent

to a mixture of two polymers with length ratio 5:1. The gray lines are lines of constant

pressure; the lowest is at reduced pressure PβR3
11 = 25, the next at PβR3

11 = 100 and

then increasing in increments of 100. It becomes increasingly difficult to determine the

binodal as P is increased; the coexisting phase to the right is almost pure species 2 (x = 1)

and the total density ρ becomes very high. The right hand branch of the FW line and the

oscillatory-oscillatory crossover cannot be seen due to their proximity to the x = 1 axis.

Also plotted is the Fisher-Widom (FW) line to which we shall return later. Other repre-

sentative phase diagrams are shown in Figs. 5.2 – 5.4. These are obtained from the same

mean field free energy but correspond to different choices of R22/R11, i.e. different length

ratios. In each case ε12/ε11 is chosen to keep the (total) critical density at a similar value

to that of the original mixture. As R22/R11 is reduced the critical concentration xc shifts

to higher values and the shape of the FW line is altered significantly.

Finally in Fig. 5.5 we consider a different class of mixture described by the parameters

ε∗11 = ε∗22 = 2, ε∗12 = 2.07 and R11 = R22 = R12. Now the demixing occurs not because of

the non-additivity of the Rij but because there is a lower energy penalty when like species

are neighbours. The phase diagram is symmetrical about x = 0.5. We shall find that

several of the interfacial properties are quite different in this class of mixture from those

in the former class.



5.3 Properties of the fluid-fluid interface 61

0 0.5 1
x

0

5

10

ρR11

3

Spinodal

Binodal

FW line

MONOTONIC

OSCILLATORY

Figure 5.4: As in Fig. 5.1 but now ε12/ε11 = 1.0 and R22/R11 = 0.8 which is equivalent

to a mixture of two polymers with length ratio 1.46:1. The gray lines are lines of con-

stant pressure; the lowest is at reduced pressure PβR3
11 = 100 and the others increase in

increments of 100. For these parameters there is no crossover line between two types of

oscillatory decay and no cusp in the FW line.

5.3 Properties of the fluid-fluid interface

In this section we investigate the one-body density profiles ρi(z), i = 1, 2, and the surface

tension γ for the planar interfaces which arise between coexisting fluid phases in the

GCM. Since our approach is based on the mean-field free energy functional (5.2.2) effects

of capillary-wave fluctuations are omitted and (away from the critical point) the interfacial

width remains finite in vanishing gravitational field. Thus we work with the grand potential

functional

ΩV [{ρi}] = F [{ρi}] −
2

∑

i=1

∫

dr(µi − Vi(r))ρi (r), (5.3.1)

which is the two component generalisation of Eq. (2.3.7). Taking from the outset the exter-

nal potentials Vi(r) = Vi(z) = 0, this procedure yields well-defined planar density profiles

ρi(z), with z normal to the surface, from which the surface tension can be calculated.
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Figure 5.5: As in Fig. 5.1 but now ε12/ε11 = 1.035 and R22/R11 = 1.0. In this symmetrical

case there is no crossover line between two types of oscillatory decay and no cusp in the

FW line. Note the perfect symmetry about the line x = 0.5. The tie lines are horizontal

in this case.

5.3.1 Density profiles

In order to calculate the equilibrium density profiles across the free interface we follow

the procedure used in chapter 3 for the free interface profiles within Landau theory, i.e.

we take the functional derivative of (5.3.1) which, using (5.2.2) and in the absence of an

external field yields the Euler-Lagrange equation

µi = µi,id(ρi(z1)) +
2

∑

j=1

∫

dr2ρj(z2)vij(|r1 − r2|), i = 1, 2. (5.3.2)

µi,id is the chemical potential of species i in an ideal gas, βµi,id(ρi) = ln(Λ3
i ρi) (Λi is the

thermal de Broglie wavelength). Eliminating the chemical potentials in favor of the bulk

coexisting densities ρb
i that were found from the calculation of the binodal we have:

ρi(z1) = ρb
i exp[

2
∑

j=1

∫

dr2(ρ
b
j − ρj(z2))vij(|r1 − r2|)], i = 1, 2. (5.3.3)

This coupled pair of equations can be solved self consistently for the density profiles of

the two species. The results for a mixture of Gaussian particles representing a mixture of
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polymers of length ratio 2:1 are shown in Fig. 5.6. The striking feature is the development

of pronounced oscillations in the density profile of the larger species, ρ1(z) for states well

removed from the critical point. Closer inspection shows that for states C,D,E and F both

density profiles ρ1(z) and ρ2(z) exhibit non-monotonic decay into the bulk phase which

is rich in species 1. On the other side of the interface, approaching the bulk phase rich

in species 2, magnification shows that both ρ1(z) and ρ2(z) are non-monotonic for states

D,E and F. For states A and B, closer to the critical point, there is no sign of oscillations

on either side of the interface.

This is not the first time that damped oscillatory density profiles have been calculated

for fluid-fluid interfaces treated by DFT. Evans et al. [49] found that the planar liquid-

vapour density profiles for a one component square-well fluid treated by means of non-local

weighted density approximation for repulsive forces exhibited oscillations on the liquid side

of the interface provided the thermodynamic state lay sufficiently far from the bulk critical

point. The oscillations we find for species 1 in the present calculations are considerably

more pronounced than those found in Ref. [49] and resemble those found for the colloidal

profile in a recent DFT study [50, 51] of a model colloid-(ideal) polymer mixture in which

colloid-colloid and colloid-polymer interactions are hard-sphere like. The oscillations were

found in both the colloid and polymer profiles but only on the colloid rich side of the

interface. Here we find, for a range of thermodynamic states, oscillations on both sides

of the interface. Moreover these oscillations arise for a system in which the interparticle

potentials are very soft and are treated by means of the simplest mean field DFT.

In the original analysis of oscillatory one-body density profiles ρ(z) at the liquid-vapour

interface it was shown [49] that oscillations should occur when the bulk fluid, in that case

a liquid, lies on the oscillatory side of the FW line. The latter divides the bulk phase

diagram into regions where the longest range decay of rh(r) is either pure exponential or

(exponentially) damped oscillatory [2]. h(r) = g(r) − 1 is the total pairwise correlation

function of the fluid. It was also argued that the wavelength and the decay length of

the oscillations in ρ(z) as z → ∞ (deep into the bulk phase) should be identical to those

characterizing the asymptotic decay (r → ∞) of rh(r) [49]. In order to understand the

genesis of oscillations in ρ1(z) and ρ2(z) for our present model we calculated the FW line

for the bulk mixture, now defined as the line in the phase diagram where the leading

asymptotic decay of all three pairwise correlation functions hij(r), 1 ≤ i, j ≤ 2, crosses

over from monotonic to oscillatory; these FW lines are shown in Figs. 5.1 – 5.5. Details of
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Figure 5.6: The equilibrium density profiles of species 1, the larger particles (top figure),

and species 2 (lower figure), at the planar interface between coexisting fluid phases for

states specified in Fig. 5.1, i.e. a mixture of two polymers with length ratio 2:1. For state

A near the critical point, the interface is broad whereas far from the critical point, states E

and F, the interface becomes much sharper. Oscillatory profiles are found for states C-F.

The insets show magnifications of regions where the profiles exhibit oscillations. Note that

the profiles of both species decay into a given bulk state with the same decay length and,

when oscillatory, the same wavelength. The amplitude and the phase do depend on the

species.
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Figure 5.7: Equilibrium density profiles of species 1 for the symmetric mixture with

ε12/ε11 = 1.035 and R22/R11 = 1.0 whose phase diagram is given in Fig. 5.5. The density

profiles are calculated at total bulk densities ρR3
11 = 6,8,11,14 and 16 (from bottom to top

in the left hand phase). The density profiles of species 2 are merely reflections of these

profiles in the line z/R11 = 25.6.

the calculations are described in Sec. 5.4. Here it suffices to say that we find oscillations

on both sides of the interface when the tie lines intersect both sides of the binodal at

points which lie above the two intersections of the FW line (this has two branches) with

the binodal, i.e. states D,E and F in Fig. 5.1. A similar situation occurs for the more

symmetrical case ε12/ε11 = 1.0 and R22/R11 = 0.8, shown in Fig. 5.4. However, for the

more asymmetrical cases in Figs. 5.2 and 5.3 where the right hand branch of the FW line

lies very close to the x = 1 axis and therefore intersects the binodal at very high densities,

oscillations are observable at fairly low pressures on the side of the interface rich in species

1 (small x) whereas for the side rich in species 2, very high pressures are required before

the oscillations arise.

For the perfectly symmetrical mixture R22/R11 = 1.0, whose phase diagram is shown

in Fig. 5.5, the binodal and the FW line are symmetric about x = 0.5 and the density

profiles ρ1(z) and ρ2(z) are simply reflections of each other – see Fig. 5.7. Because of the

symmetry, if oscillations occur in the profiles on one side of the interface they must occur



66 Binary GCM: Fluid-Fluid Phase Separation and Interfacial Properties

on the other side. As can be seen from Fig. 5.5, the intersection of the FW line with the

binodal is at a total density not very far above the critical density and oscillatory profiles

should occur for ρR3
11 > 6.5. However for states not too far above the intersection of the

FW line and the binodal the amplitude of the oscillatory contribution to the profile is

often small making it difficult to distinguish this contribution in the numerical results.

The general theory of the asymptotic decay of correlations in fluid mixtures with short

ranged interparticle potentials predicts [52] that the longest range decay of the profiles

should be

ρi(z) − ρb
i ∼ ρb

iAi exp(−α0z) , z → ∞ (5.3.4)

on the monotonic side of the FW line and

ρi(z) − ρb
i ∼ ρb

i Ãi exp(−α̃0z) cos(α1z − θi) , z → ∞ (5.3.5)

on the oscillatory side. Equivalent relations apply for z → −∞, with the appropriate

identification of the bulk densities ρb
i . The decay lengths α−1

0 and α̃−1
0 and the wavelength

of oscillations 2π/α1 are properties of the bulk fluid and are the same for both species

(see Sec. 5.4). Only the amplitudes Ai and Ãi and, for oscillatory profiles, the phase θi

depend on the particular species. Our numerical results are consistent with these general

predictions. Note that on the FW line α0 = α̃0 and that for states near this line both

types of contribution must be taken into account.

5.3.2 Surface tension

Having calculated the equilibrium density profiles at the free interface, these can be used

to obtain the surface tension of the interface. The latter is defined as the excess grand

potential per unit area and can be written as

γ =

∫ ∞

−∞
dz(P + ω(z)) (5.3.6)

where P is the bulk pressure at coexistence and ω(z) is the grand potential density obtained

from Eqs. (5.2.2) and (5.3.1) with Vi(z) = 0. The reduced tension γ∗ = βγR2
11 is plotted in

Fig. 5.8 for the interfaces corresponding to Fig. 5.6, i.e. the phase diagram of Fig. 5.1. We

have chosen to plot γ∗ versus the order parameter (ρb,A
1 − ρb,B

1 )R3
11, where ρb,A

1 is the bulk

density of species 1 in phase A, rich in species 1 and ρb,B
1 is the same quantity in phase

B, poor in species 1 [53]. On approaching the critical point simple mean-field arguments



5.3 Properties of the fluid-fluid interface 67

0 1 2 3 4 5 6 7 8 9
(ρ1

b,A
−ρ1

b,B
)R11

3

0

1

2

3

4

5

6

7

8

9

10

11

βγR11

2

Figure 5.8: The reduced surface tension γ∗ = βγR2
11 calculated for the planar interface

between coexisting fluid phases in the system specified in Fig. 5.1, i.e. a mixture of two

polymers with length ratio 2:1. (ρb,A
1 − ρb,B

1 )R3
11, the difference in density of species 1

between bulk phases A and B, and γ vanish at the critical point. The circles are the

results of our calculations and the solid line joining these is a guide to the eye.

imply that γ∗ should vanish as (ρb,A
1 −ρb,B

1 )3 and this is confirmed by our numerical results

– see also Fig. 8.6 which displays results for a closely related fluid, namely a binary fluid

composed of particles interacting via pair potentials which model the interaction between

star polymers. A similar plot of γ∗ for the perfectly symmetric mixture is displayed in

Fig. 5.9. Note that for a given value of (ρb,A
1 − ρb,B

1 )R3
11, γ∗ is significantly larger for the

asymmetric mixture (Fig. 5.8).

We can obtain an estimate for the surface tension of a phase separated mixture of

‘polymers’ by choosing γ∗ = 5, corresponding to a state well removed from the critical

point, T = 300K and R11 = 20nm. We find γ = 52µN/m, a value one order of magnitude

greater than that calculated and measured for a colloid-polymer mixture [53], but two

orders of magnitude smaller than the tensions of simple atomic fluids near their triple

points.

Further insight into the factors which determine the surface tension in our binary

mixtures can be obtained by working with linear combinations of the density profiles
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Figure 5.9: The reduced surface tension γ∗ = βγR2
11 calculated for the planar interface

between coexisting fluid phases in the perfectly symmetric system specified in Fig. 5.5.

(ρb,A
1 − ρb,B

1 )R3
11, the difference in density of species 1 between bulk phases A and B, and

γ vanish at the critical point. The circles are the results of our calculations and the solid

line joining these is a guide to the eye.

ρ1(z) and ρ2(z). The total number density N(z) and a local concentration variable C(z),

the surface segregation, may be defined for a fluid-fluid interface by

N(z) = ρ1(z) + ρ2(z) (5.3.7)

C(z) =
xρ1(z) − (1 − x)ρ2(z)

x(1 − x)
(5.3.8)

where x is the concentration of species 2 in the bulk liquid phase. These variables are

normally introduced for a liquid-gas interface. For the situation were the ‘gas’ phase has

a non-zero density, the integral over C(z) diverges. When the densities of both phases are

comparable, C(z) should be replaced by the symmetrized segregation [54]

∆(z) =
a2(ρ1(z) − ρb,A

1 ) − a1(ρ2(z) − ρb,A
2 )

a1a2
(5.3.9)

where the ai are given by

ai =
ρb,A

i − ρb,B
i

(ρb,A
1 + ρb,A

2 ) − (ρb,B
1 + ρb,B

2 )
, i = 1, 2. (5.3.10)
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Figure 5.10: The top graph a) shows the function ∆(z) obtained from the density profiles

shown in Fig. 5.6. ∆(z), defined by Eq. 5.3.9, measures the surface segregation at the

interface. Below it in b) is plotted (ω(z)+P ), the integral of which is the surface tension.

Each set of curves correspond to state points A-F on the phase diagram (Fig. 5.1); the

most oscillatory refers to state F. Apart from the scales on the y-axes the two sets of

curves are almost identical, demonstrating that the surface tension arises primarily from

concentration fluctuations. The total density N(z) = ρ1(z) + ρ2(z), shown in the inset to

a), has very different variation from the surface tension integrand.

with A and B referring to the two coexisting phases. Clearly a1 + a2 = 1. ∆(z) may also

be expressed as

∆(z) =
a2(ρ1(z) − ρb,B

1 ) − a1(ρ2(z) − ρb,B
2 )

a1a2
(5.3.11)

The integral of ∆(z) yields the thermodynamic function Γ2,1, i.e. the relative adsorption

of species 2 with respect to species 1 [54]:

Γ2,1 = −a2

∫ ∞

−∞
dz∆(z) (5.3.12)

Thus ∆(z), which has the dimension of number density, measures the variation of local

concentration through the interface. Fig. 5.10 shows a plot of ∆(z) calculated from the

profiles in Fig. 5.6. Below it is displayed (ω(z) + P ), the integrand of Eq. (5.3.6) which
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Figure 5.11: The top graph a) shows the function (ω(z) + P ) for the symmetric mixture

obtained from the density profiles shown in fig. 5.7, the integral of which is the surface

tension. Below it in b) is plotted the total density fluctuation variable Ñ(z) ≡ ρb −N(z).

Apart from the scales on the y-axes the two sets of curves are almost identical.

gives the surface tension. Both functions are only non-zero in the interfacial region. The

similarity between the two sets of curves shows that the major contribution to the surface

tension comes from concentration fluctuations at the interface rather than from fluctua-

tions of the total density since N(z) has a very different form – see the inset to part a) of

the figure.

The situation is quite different for the perfectly symmetric mixture considered in Fig.

5.5. Because of the symmetry exhibited by the density profiles, a2∆(z) = ρb−N(z), where

ρb = ρb,A
1 + ρb,A

2 is the total density in both bulk phases. In Fig. 5.11 we compare plots of

the surface tension integrand (ω(z)+P ) and the function Ñ(z) ≡ ρb−N(z) corresponding

to the density profiles of Fig. 5.7. It is clear that the two sets of curves are very similar.
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5.4 Asymptotic decay of correlation functions and the

Fisher-Widom line

In this section we describe the asymptotic decay, r → ∞, of the total pairwise correlation

functions hij(r) in our model mixture and the determination of the FW line. The basic

procedure follows that in [52]. In Fourier space the Ornstein-Zernike (OZ) equations for

hij(r) in terms of the pairwise direct correlation functions cij(r) of a two component liquid

are:

ĥij(q) =
Nij(q)

D(q)
(5.4.1)

where ĥij(q) is the three-dimensional Fourier transform (FT) of hij(r). The numerator is

given by

N11(q) = ĉ11(q) + ρb
2(ĉ

2
12(q) − ĉ11(q)ĉ22(q))

N22(q) = ĉ22(q) + ρb
1(ĉ

2
12(q) − ĉ11(q)ĉ22(q))

N12(q) = ĉ12(q) (5.4.2)

and

D(q) = [1 − ρb
1ĉ11(q)][1 − ρb

2ĉ22(q)] − ρb
1ρ

b
2ĉ

2
12(q) (5.4.3)

Inverting the FT, and noting that ĥij(q) is even we can write:

rhij(r) =
1

4π2i

∫ ∞

−∞
dq qeiqrĥij(q)

=
1

4π2i

∫ ∞

−∞
dq qeiqr Nij(q)

D(q)
(5.4.4)

which can be evaluated by contour integration [52]. From Eq. (5.2.5) it follows that within

our mean-field treatment of the GCM

ĉij(q) = −βv̂ij(q) = −βπ
3
2 R3

ijεij exp(−R2
ijq

2/4) (5.4.5)

and the singularities of ĥij(q) are simple poles. Choosing an infinite radius semi-circle in

the upper half of the complex plane, we obtain

rhij(r) =
1

2π

∑

n

Rij
n eiqnr (5.4.6)

where Rij
n is the residue of qNij(q)/D(q) for the nth pole at q = qn. The qn are solutions of

D(qn) = 0 and there is normally an infinite number of poles. If a pole lies on the imaginary
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axis, qn = iα0, it contributes a pure exponential term of the form exp(−α0r) to the sum

in Eq. (5.4.6). Poles lying off the imaginary axis occur in conjugate pairs qn = ±α1 + iα̃0

and such a pair contributes a damped oscillatory term of the form exp(−α̃0r) cos(α1r− θ)

to the sum in Eq. (5.4.6). The longest range decay of hij(r) is determined by the pole or

the conjugate pair of poles with the smallest imaginary part. If α0 < α̃0 the longest range

decay is monotonic (pure exponential), otherwise it is damped oscillatory. Since all three

ĥij(q) have a common denominator D(q) all three hij(r) decay ultimately with the same

decay length and wavelength; only the residues depend on the particular species and these

determine only the amplitudes and phases of the leading order decay [52, 55]. Similar

arguments [52] apply for the one-body density profiles in a binary mixture and give rise to

Eqs. (5.3.4) and (5.3.5). The α0, α̃0 and α1 appearing in these equations are determined

by the poles of ĥij(q) – as described above.

The FW line alluded to earlier is the cross-over line in the phase diagram where α0 =

α̃0. As the fluid-fluid spinodal corresponds to points in the phase diagram at which the

pure imaginary pole vanishes, i.e. α0 = 0, cross-over from oscillatory to monotonic decay

must occur before the spinodal is reached which implies that the FW line lies below the

spinodal in the (ρ, x) plane. By calculating the zeros of D(q), i.e. the first few poles, for a

range of state points it is straightforward to map out the FW lines displayed in Figs. 5.1

– 5.5.

For the first three cases, Figs. 5.1 – 5.3, the dashed FW line has two separate branches

terminating in a cusp at low total density ρcu. As the mixture is made more asymmetric,

i.e. R22/R11 decreases, the right hand branch lies closer to the axis x = 1. On the left

hand branch the crossover (at fixed ρ > ρcu) is from longest range oscillatory decay with

wavelength 2π/α1 ≈ 2R11 to monotonic decay. Whereas on the right hand branch it is

from monotonic to oscillatory with wavelength ≈ 2R22. For ρ < ρcu there is a separate

crossover line, denoted by the solid line in the bottom right corner of Figs. 5.1 – 5.3. On

each side the long range decay is given by

rhij(r) ∼ Ãij exp(−α̃0r) cos(α1 − θij) + ˜̃Aij exp(− ˜̃α0r) cos(α′
1 − θ′ij), r → ∞ (5.4.7)

where α1 ≈ π/R11 and α′
1 ≈ π/R22. To the left of the line α̃0 < ˜̃α0 while on the right,

α̃0 > ˜̃α0, i.e. there is crossover from oscillatory decay with one wavelength to oscillatory

decay with another wavelength when α̃0 = ˜̃α0. At the cusp, where the two branches of

the FW line meet the new line, the pure imaginary (monotonic) pole α0 = α̃0 = ˜̃α0.
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Making the mixture more symmetric shifts the cusp to smaller x and for R22/R11 >

0.707 there is no cusp in the FW line and the new crossover line, separating regions with

different types of oscillatory decay, is absent – see Figs. 5.4 and 5.5. Further details of the

pole structure which gives rise to the crossover lines are given in Appendix B.

To the best of our knowledge this is the first time that the FW line has been mapped

out for a binary mixture exhibiting fluid-fluid phase separation of the type displayed

here1 and it is important to inquire how robust results based on the simple RPA (5.2.2)

might be. For the pure GCM the comprehensive study of Louis et al. [39] showed that

for ε∗ = 2 the radial distribution functions g(r) obtained from the hyper-netted chain

approximation (HNC) were virtually indistinguishable from Monte Carlo data at reduced

densities ρR3 = 0.1, 0.5 and 2.0. These authors also argued that the HNC should become

exact in the high density limit and suggested that the HNC pair correlation function should

provide an (‘exact’) reference against which other approximations might be gauged. In this

spirit we compare, in Fig. 5.12, the RPA results for g(r) with those obtained from our own

HNC calculations at reduced densities ρR3 = 2, 4 and 6 (see also Fig. 4.2). As the density

is increased the correlation hole is reduced and the degree of particle overlap increases

leading to a g(r) which is closer to that of the ideal gas [39]. For ρR3 = 2 the RPA result

lies well below the HNC for r/R . 0.4, i.e. in the central overlap region. However, for

ρR3 = 6 the two closures yield very similar results for all except the smallest separations

r. What is more significant for our present purposes is that for all three densities the

simple RPA result is very close to that of the HNC for large separations, i.e. r/R & 0.8.

In particular, the oscillations in g(r) are very well captured by the RPA – see inset to Fig.

5.12. This implies that the RPA provides a rather accurate account of the asymptotic

decay of g(r) and therefore of the leading pole2 in ĥ(q), at least for reduced densities & 2.

But this is the range of (total) densities most relevant in determining the FW lines in the

mixtures (see Figs. 5.1 – 5.5) so we are confident that our results for the latter should be

qualitatively correct.

1Previous studies have focused on models such as the RPM and the Yukawa-RPM, designed for ionic

fluids – see Ref. [56] and references therein.
2L.R. Croft (private communication), made an accurate comparison between the HNC and RPA poles

for the one component GCM. It was found that the dominant HNC pole is very similar in value to that

obtained from the analytically tractable RPA. This study showed that retaining only the leading pole

contribution yields an excellent fit to g(r) for r down to the position of the first maximum. For the method

used to calculate the leading pole from numerical solutions of the HNC see Ref. [57].
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Figure 5.12: The radial distribution function g(r) for a pure fluid of Gaussian particles

with ε∗ = 2 and radius R, calculated at reduced densities ρR3 = 2, 4, 6 (from bottom to

top). For each density the dotted line is from the HNC result and the solid line is that of

the RPA closure. The inset shows a magnification of the oscillations.

Further evidence for the existence of the new oscillatory-oscillatory crossover line comes

from considering the low density approximation

cij(r) = fij(r) ≡ exp(−βvij(r)) − 1 (5.4.8)

where fij(r) denotes the Mayer function. We calculated the zeros of D(q), Eq. (5.4.3),

using this approximation and found a crossover line approaching ρ = 0, x = 1, similar to

that shown in the bottom right corner of Figs. 5.1 and 5.23. Finally we should remark

that in Ch. 8.3 we describe in greater detail the accuracy of the RPA in comparison to the

HNC for determining the fluid structure (pair correlation functions) and thermodynamic

properties of a binary mixture of particles interacting via potentials mimicking the effective

interaction between star-polymers in solution.

3Very recently an oscillatory-oscillatory crossover line was found for binary hard-sphere mixtures treated

in the Percus-Yevick approximation and for a binary mixture of hard rods in one dimension treated exactly

(R. Roth, private communication).



5.5 Discussion 75

5.5 Discussion

In this chapter we have calculated the properties of the planar interface between two

coexisting fluid phases in the binary GCM using the simplest mean-field free energy func-

tional (5.2.2). We considered various choices of the size ratio R22/R11, employing the rule

(5.2.14) for the range parameter R12. It is the positive non-additivity embodied in (5.2.14)

which drives the demixing in Figs. 5.2 – 5.4 since the corresponding energy parameters

favour mixing, i.e. ε∗11 = ε∗22 ≥ ε∗12. The surface tension in these systems is governed by the

segregation ∆(z), which measures the local relative concentration in the interface, rather

than by the local total density N(z) – see Fig. 5.10. For comparison we also considered a

symmetric system with R22/R11 = 1.0 and ε∗12 > ε∗11 where the demixing is driven by en-

ergy considerations. Symmetry then dictates that the phase diagram is symmetric about

x = 0.5 (Fig. 5.5) and the surface tension is governed by N(z) – see Fig. 5.11. However,

in all the cases we considered, plots of the reduced surface tension γ∗ versus the order

parameter (ρb,A
1 − ρb,B

1 )R3
11 showed similar behaviour as those in Figs. 5.8 and 5.9 with γ∗

vanishing at the critical point as (ρb,A
1 − ρb,B

1 )3. Beyond mean-field the exponent should

be replaced by the ratio 2ν/β, where ν denotes the correlation length and β the coexis-

tence curve (order parameter) critical exponent, respectively. As we expect the critical

behaviour of this system to lie in the Ising Universality class, for which 2ν/β ' 3.9, the

curves in Figs. 5.8 and 5.9 should, in reality, be flatter near the origin.

The most striking aspect of the results presented in this chapter (Figs. 5.6 and 5.7) is

the presence of pronounced oscillations in the interfacial density profiles for certain ther-

modynamic states. We accounted for the occurrence of damped oscillations in terms of

general arguments involving the asymptotic decay of the bulk pairwise correlation func-

tions hij(r), i.e. by means of an analysis of the leading poles of ĥij(q) and determination

of the FW lines which parallels earlier DFT treatments of interfaces [49, 50, 51]. The

oscillations arise from packing effects which are still present in these soft core systems.

Although our present mean-field functional (5.2.2) should provide reliable estimates for

α̃0 and α1 and, hence, for the decay length and wavelength of the oscillations (see Eq.

(5.3.5)), it is not clear that it will yield reliable amplitudes Ãi. The latter depend on the

strength and extent of the inhomogeneity rather than on properties of the bulk phase.

Thus for states such as E and F in Fig. 5.1, which are very far from the critical point and

deep in the oscillatory region of the phase diagram, the theory must treat density profiles
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that decrease from ρ1R
3
11 ' 9 to extremely low values ρ1R

3
11 ' 0.03 over a distance of

about 2R11 (see Fig. 5.6). One could expect the the functional (i.e. the RPA) to fail

in the very low density region. The situation seems rather more favourable for species 2

(Fig. 5.6) where ρ2R
3
11 ≥ 0.3 throughout the interface for all states. However, even for

state F, the oscillations in ρ2(z) are extremely weak! The total density N(z) is, of course,

large throughout the interface and shows only mild variation for all states (see inset to

Fig. 5.10). But the theory must be able to describe the individual profiles. These exhibit

a degree of inhomogeneity which is higher than for the pure GCM near a hard-wall where

the functional performs well [39]. We believe that a more refined DFT, which incorpo-

rates a more accurate treatment of low densities, might yield smaller amplitudes for the

oscillations in ρ1(z) without altering significantly their decay length and wavelength4.

For the present system, the development of oscillatory density profiles for the free

interface seems to be determined by the location of the FW line. However, this does not

always seem to be the case. In Monte Carlo simulations of a liquid-metal described by a

classical pair potential model [58, 59, 60], very pronounced oscillations on the liquid side of

the planar liquid-gas interface were found, and the development of the oscillations seems

unrelated to the location in the phase diagram of the FW line. This model was constructed

in order to suppress the melting temperature Tm relative to the critical temperature Tc,

i.e., Tm/Tc . 0.2, and in these circumstances the surface tension can be large. The

high surface tension results in a rather ‘stiff’ interface, and this seems to be the origin of

the strongly oscillatory density profiles near the interface. We can therefore distinguish

two factors which need to be considered when analyzing oscillatory free interface density

profiles: Firstly, one can envisage that if an interface is particularly ‘stiff’, then oscillatory

profiles can arise near to the interface, in a way somewhat analogous to the profile of a

fluid at a hard planar wall. These oscillations are determined by the stiff interface, rather

than the location of the FW line. However, a second, slightly different consideration is the

asymptotic decay of the density profiles, which is determined by the leading order pole in

the structure factor, and in this case the location of the FW line determines whether the

decay is oscillatory or monotonic, i.e. no matter how stiff the interface is, if one is on the

monotonic side of the FW line, the ultimate asymptotic decay of the density profiles will

4A.J. Masters (private communication) has made such a modification and used this to investigate the

interfacial profiles of a binary mixture of particles interacting via repulsive parabolic potentials. He finds

the modification does reduce the amplitude of the oscillations.
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be monotonic.

All approximate DFT treatments omit the effects of capillary-wave fluctuations of the

interface [7]. Incorporating the latter usually requires some ad-hoc prescription. The

standard procedure is to assume that DFT furnishes the ‘bare’ or ‘intrinsic’ profiles –

which might be oscillatory, as in the present case, and that fluctuations can be unfrozen

on these. At the simplest level one performs a Gaussian smearing of the profiles over the

interfacial thermal roughness ξ⊥. If the profile has an oscillatory tail with the form of

Eq. (5.3.5) one finds the wavelength 2π/α1 and decay length α̃−1
0 are unaltered but the

amplitude is reduced by a factor exp[−(α2
1 − α̃2

0)ξ
2
⊥/2] [52, 61]. As we have seen, α1 is an

intrinsic property of the bulk fluid and is approximately π/R11 or π/R22. The roughness

ξ⊥ depends on the interfacial area L2
x and on the external potential, e.g. gravity, that might

be present at a real planar interface. If we ignore the latter ξ2
⊥ = (2πβγ)−1 ln(Kmax/Kmin)

where Kmax and Kmin are the upper and lower cut-off wavenumbers for the capillary wave

fluctuations [7]. We may take Kmin = 2π/Lx and Kmax = 2π/ξ where ξ ≡ α̃−1
0 is the

bulk correlation length. It follows that the amplitude of the oscillations in the density

profile should be reduced by a factor (Lx/ξ)−ω[(α1/α̃0)2−1] where ω ≡ (4πβγξ2)−1 (see Eq.

(3.7.10)) is the standard dimensionless parameter which measures the strength of capillary

wave fluctuations. Clearly the larger the value of ω, i.e. the smaller the surface tension γ,

the more damped are the oscillations. What is significant about this formula is that the

amplitude is predicted to have a power-law dependence on the interfacial area L2
x. This

prediction has been examined by Toxvaerd and Stecki [62] (see also [59]) in molecular

dynamics simulations of a liquid-liquid interface. Their model is an equi-molar binary

mixture in which the 11 and 22 interatomic potentials are identical, both are (truncated)

Lennard-Jones, whereas the 12 potential is purely repulsive. Thus their model mixture

resembles the symmetric case in our present study. For small Lx the density profiles

reported in [62] exhibit oscillations similar to those in Fig. 5.7. The oscillations appear

to be insensitive to the length of the simulation box (perpendicular to the interface) but

their amplitude depends on the area L2
x of the box. Increasing Lx reduces the amplitude

in a manner that is consistent with power law decay [62] lending support to the picture of

‘Gaussian unfreezing’ of fluctuations on an intrinsic profile that is oscillatory.

It is important to consider the various length scales in the problem. For the mixture

in Ref. [62] we expect ξ ∼ σ, the Lennard-Jones diameter, and α1 ∼ 2π/σ for states

well-removed from the critical point where pronounced oscillations are observed. σ would



78 Binary GCM: Fluid-Fluid Phase Separation and Interfacial Properties

be a few Å if we were modeling an atomic mixture. In our present GCM we have in mind

polymers where the radius of gyration R11 is, of course, much longer. Nevertheless, it is

evident that the absolute length scales cancel out in the combinations (α1/α̃0)
2−1 and ω.

Thus one might expect similar power-laws for the damping of oscillations with interfacial

area. Detailed estimates depend on the precise values of the reduced tension γ∗, α̃0 and

α1. As an illustration we consider the symmetric case of the GCM with total bulk density

ρR3
11 = 14 where the oscillations are fairly well pronounced – see Fig. 5.7. At coexistence

we find α1R11 = 4.69, α̃0R11 = 1.34 and the reduced surface tension γ∗ = 17.1 which

implies ω = 8.37 × 10−3 and (α1/α̃0)
2 − 1 = 11.3. Thus the exponent in the power-law

is −0.1, implying that the amplitude of the oscillations is only weakly damped by the

capillary wave fluctuations. If we repeat the calculation for the interface simulated by

Toxvaerd and Stecki [62], using their values α̃0σ = 0.28, α1σ = 6.98 and γ∗ ≡ βγσ2 = 2.7

we find a much stronger damping: the exponent is −1.4. For the liquid-vapour interface of

a simple one-component fluid near its triple point the corresponding exponent is usually

estimated to be about −3. In other words our present binary GCM exhibits a particularly

‘stiff’ interface for those states where the the oscillations in the mean-field treatment are

pronounced. Of course, these states are far from the critical point and correspond to very

high total densities and very high surface tensions. One does not normally observe such a

situation at the liquid-vapour interface of the one-component fluid since the triple point

(solid phase) intervenes. (Note that the liquid-metal model mentioned earlier [58, 59, 60],

is constructed so that the triple point is far removed from the critical point, allowing for

high liquid-gas surface tensions). There should be no solid phases in the relevant high-

density region of the phase diagram of the binary GCM. This suggests that computer

simulations of the fluid-fluid interface might be very revealing5.

5We note that A.J. Masters and P.B. Warren (private communication) have performed dissipative

particle dynamics (DPD) simulations of a model binary mixture of particles interacting via repulsive

parabolic potentials. They find oscillatory density profiles. An earlier DPD simulation study, Ref. [63],

describes the model and the technique and examines the validity of mean-field theory for the pure fluid

and the mixture, see also Ref. [64].



Chapter 6

Wetting in the Binary Gaussian

Core Model

Using a simple mean-field density functional approach we investigate the adsorption of

a binary fluid mixture of repulsive Gaussian core particles at a repulsive planar wall.

For certain choices of wall-fluid potential we find a first-order wetting transition, and the

accompanying pre-wetting line, whereby the fluid phase rich in the larger species completely

wets the interface between the wall and the fluid phase rich in the smaller species. We show

that in the complete wetting regime the film thickness diverges as l ∼ −l0 ln(x − xcoex.),

where (x − xcoex.) is the deviation in concentration x of the smaller species from the bulk

binodal, for all the (short ranged) wall potentials we have considered but the amplitude l0

depends on the precise details of these potentials.

6.1 Introduction

This chapter is concerned with the adsorption at a purely repulsive planar wall of the

binary mixture of Gaussian particles, treated within the same (RPA) density functional

approximation that was used in Ch. 5 for the planar free interface. We shall build upon

the ideas introduced in Ch. 3, in our (Landau theory) analysis of wetting transitions

for simple one-component fluids. For one-component fluids we find that a suitable order

parameter in the description of wetting transitions is the adsorbed film thickness l. For

binary fluids, one could derive a Landau free energy of the form (3.1.2), where the order

parameter φ(r) is in this case the concentration of one of the components in the binary

79
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fluid. Thus we could expect the (Landau theory) analysis of Ch. 3 to apply also for the

wetting behaviour of binary fluids. This is indeed what we find in the present DFT theory

for wetting in the binary GCM, and we analyze our results in terms of effective interface

potentials such as Eq. (3.6.5), generalised for the description of a binary fluid. We show

that for certain choices of wall-fluid potentials, a first-order wetting transition occurs from

partial to complete wetting of the interface between the wall and the fluid phase rich in

species 2 by the fluid phase rich in species 1. The transition is induced by decreasing the

total density ρ of the bulk mixture. Within the complete wetting regime the thickness of

the wetting film diverges logarithmically with [x − xcoex.] (which plays the role of δµ in

Eq. (3.6.5)), where x denotes the concentration of species 2 and xcoex. its value at bulk

coexistence, for all the (short-ranged) wall-fluid potentials that we investigate. However,

the length scale associated with the film growth depends sensitively on the details of these

potentials. We also find a critical wetting transition when the decay-length of the wall-fluid

potential is particularly short.

6.2 The model mixture and choice of wall-fluid potentials

Recall from Ch. 5 that the GCM binary mixture is specified by the pair potentials between

particle species i and j. These are given by the Gaussian form

vij(r) = εij exp(−r2/R2
ij) (6.2.1)

where εij > 0 denotes the energy and Rij , which is approximately the radius of gyration

of the polymer, determines the range of the ij interaction; 1 ≤ i, j ≤ 2. We employ a

simple mean field form for the intrinsic Helmholtz free energy functional, F [{ρi}], of the

inhomogeneous mixture, Eq. (5.2.2). As described in Ch. 5, the functional defined by Eq.

(5.2.2) generates the random phase approximation for the pair direct correlation functions:

c
(2)
ij (r1, r2) = c

(2)
ij (|r1−r2|) = −βvij(|r1−r2|), for all inhomogeneities. In the present study

we work with the grand potential functional

ΩV [{ρi}] = F [{ρi}] −
∑

i

∫

dr[µi − Vi(r)]ρi(r) (6.2.2)

where Vi(r), i = 1, 2, is the external potential acting on species i and µi is the chemical

potential of that species. An obvious choice of wall-fluid potential is a Gaussian wall with
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a form analogous to (6.2.1):

βVi(z) =











∞ z ≤ 0

Ai exp[−(z/Rii)
2] z > 0,

(6.2.3)

where z is the distance from the wall and Ai > 0 is an amplitude and we investigated the

wetting behaviour of such a model system. Recall that complete wetting by a liquid in

a typical one-component fluid may occur at an attractive wall when the bulk gas phase

is close to coexistence. Then a film of the liquid phase is adsorbed at the wall whose

thickness diverges on approaching coexistence [11]1. For the GCM binary fluid we sought

wetting at the wall by one of the demixed fluid phases. More specifically, the bulk fluid

phase was chosen to be that rich in species 2, the smaller particle, (see Fig. 6.1) and we

sought complete wetting by the fluid phase rich in species 1 by calculating the density

profiles ρi(z) and adsorption

Γi =

∫ ∞

0
dz(ρi(z) − ρb

i), (6.2.4)

where ρb
i = ρi(∞) is the bulk density of species i, on paths corresponding to decreasing x

towards xcoex. (the bulk binodal point) at fixed total density ρ. The profiles are obtained by

minimizing the functional (6.2.2). With the wall potential given by (6.2.3) and amplitude

ratios A2/A1 which are not far removed from unity one does not find a transition to

complete wetting. However, if one chooses the wall potentials to be of the same Gaussian

form, but now with the same decay length λ for both species:

βVi(z) =











∞ z ≤ 0

Ai exp[−(z/λ)2] z > 0,
(6.2.5)

one does find a transition to complete wetting. By making the decay length of the wall-

fluid potential the same for both species one has set the decay length measured on the

scale of the smaller of the two species of particles to be longer ranged. The result is

an effective attraction between the wall and the larger of the two species which ensures

that the smaller species of particles is depleted more strongly from the wall than is the

larger. This is in spite of the fact that all the intrinsic particle-particle and wall-particle

potentials are repulsive. (Note that although the potentials of Eq. (6.2.3) also generate an

1A first-order wetting transition and the accompanying pre-wetting were first obtained by J.W. Cahn

[65] and by C. Ebner and W.F. Saam [66]
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Figure 6.1: The phase diagram for a mixture of Gaussian particles, equivalent to a mixture

of two polymers with length ratio 2:1 – i.e. the same as Fig. 5.1. ρ is the total density

and x is the concentration of the smaller species 2. The inset shows a magnification of

the pre-wetting line, meeting the binodal (solid line) tangentially at the wetting point,

for a wall potential given by Eq. (6.2.7) with λ/R11 = 1. The lower point denotes the

pre-wetting critical point. The path in the phase diagram marked C is at fixed ρR3
11 = 7.0

along which the density profiles in Fig. 6.3 are calculated. The path marked D is at fixed

ρR3
11 = 8.8 along which the profiles in Fig. 6.2 are calculated. This path intersects the

pre-wetting line.

effective attraction this appears to be insufficiently strong to drive the transition). As a

consequence of this attraction one finds that if the bulk fluid is a phase poor in the larger

species, but is near to phase separation, then a wetting film of the coexisting phase, rich in

the larger particles, may grow on the wall provided ρ is sufficiently low. Complete wetting

is not limited to this particular form of the wall potential. For example, an exponentially

decaying wall potential of the form

βVi(z) =











∞ z ≤ 0

Ai exp[−z/λ] z > 0,
(6.2.6)

also yields complete wetting. The effective attraction has the same origin as for Eq. (6.2.5).
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The studies of Louis et al. [19, 39] have considered a wall-fluid potential of the form

βV (z) = exp(−z/R)/(z/R) for the one component Gaussian core fluid. This form was

motivated by the effective wall potentials obtained from inverting Monte Carlo simulation

density profiles of self avoiding walk polymers at a hard wall, i.e. the density profile of

the Gaussian core fluid at a wall potential of the form βV (z) = exp(−z/R)/(z/R) mimics

the polymer center of mass profile at a hard-wall. The obvious generalization to the two

component fluid is to set βVi(z) = exp(−z/Rii)/(z/Rii). With this choice of wall potential

one does not observe complete wetting; the situation is the same as for the Gaussian wall

potential of Eq. (6.2.3). Not surprisingly, if one chooses the wall potentials to be of the

same form but with both having the same decay length λ:

βVi(z) =











∞ z ≤ 0

Ai exp[−z/λ]/[z/λ] z > 0
(6.2.7)

with Ai ∝ Rii, then one observes complete wetting for sufficiently low ρ, approaching

the bulk critical (consolute) point. For those models where complete wetting occurs, one

finds that as one moves up the binodal, away from the critical point, there is a ‘wetting

point’, above which partial wetting occurs; one finds a thin layer, at most two particle

diameters thick, adsorbed at the wall. The location of the wetting point on the binodal

is dependent on the details of the wall potential. As the transition is (usually) first-order

there is a pre-wetting line descending to lower ρ from the wetting point. This line is a

tangent to the binodal at the wetting point, and ends in a critical point away from the

binodal, see the inset to Fig. 6.1. The pre-wetting line is a line of a first order surface

phase transitions [11]. For a path in the phase diagram intersecting the pre-wetting line,

the film thickness grows very slowly until the pre-wetting transition where there is a jump

in the film thickness. Inside the pre-wetting line the wetting film thickness increases and

finally diverges at the binodal. For a path which lies below the pre-wetting critical point,

the film thickness increases continuously; there is no jump.

6.3 Results of calculations

6.3.1 First-order wetting transition

We illustrate the wetting characteristics for a particular choice of the parameters specifying

the binary GCM and for a given choice of the parameters specifying the wall potential
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(6.2.7). We chose the pair potential parameters ε11 = ε22 = 2kBT , ε12/ε11 = 0.944,

R22/R11 = 0.665 and R12/R11 = 0.849, which is equivalent to a mixture of two polymers

with length ratio 2:1 – i.e. corresponding to the phase diagram in Fig. 5.1, some of which

is reproduced in Fig. 6.1. This binary mixture demixes at sufficiently high total densities,

ρ = ρ1 +ρ2, with a lower critical point at (xc, ρcR
3
11) = (0.70, 5.6) (see Fig. 6.1), where x is

the concentration of species 2, the smaller particles. Fig. 6.1 is a typical binary GCM phase

diagram. We have marked on it the wetting point and the pre-wetting line calculated for

the wall potential given by Eq. (6.2.7), with λ/R11 = 1, and amplitudes A1 = 1 and A2 =

R22/R11 = 0.665. The wetting point is at (x, ρR3
11) = (0.957, 8.93). Descending from the

wetting point is the pre-wetting line ending in a critical point at (x, ρR3
11) = (0.949, 8.50).

This line is very short (in ρ) and lies very close to the binodal. The wetting point and the

pre-wetting line are determined by analysing the density profiles and the adsorption Γ1;

the latter exhibits a discontinuous jump at the pre-wetting transition.

Fig. 6.2 displays some typical density profiles for states approaching the binodal, along

path D in Fig. 6.1, at a constant bulk density ρR3
11 = 8.8 intersecting the pre-wetting

line and Fig. 6.3 displays some typical density profiles for states along path C in Fig. 6.1,

at a constant bulk density ρR3
11 = 7.0. Since this lower density lies below that of the

pre-wetting critical point, the wetting film grows continuously as x is decreased towards

xcoex.. In Fig. 6.4A Γ1, the adsorption of species 1, corresponding to the density profiles in

Fig. 6.3, is plotted against the logarithm of the deviation |x−xcoex.|, from coexistence. In

the limit x → x+
coex., Γ1 as defined by Eq. (6.2.4), is proportional to the thickness l of the

wetting film, i.e. Γ1 ∼ l(ρb,A
1 − ρb,B

1 ), where ρb,A
1 is the bulk coexisting density of species 1

in phase A, rich in species 1 and ρb,B
1 is the same quantity in phase B, poor in species 1.

Γ1, and therefore l, increase linearly with − ln(x − xcoex.).

In Fig. 6.4B Γ1 is plotted along the constant density path ρR3
11 = 8.8 (path D in Fig.

6.1), corresponding to the density profiles in Fig. 6.2, which intersects the pre-wetting line.

The jump in Γ1 occurs at the intersection with the pre-wetting line. As x → x+
coex., Γ1

and l diverge logarithmically.

These results, along with those for several other choices of potential parameters, point

to a classic first-order wetting scenario equivalent to that described in Ch. 3, see Fig.

3.4. Reducing ρ corresponds to increasing T and (x − xcoex.) plays the role of δµ. The

general trend is: the larger the range λ in Eq. (6.2.7), the further is the wetting point

from the consolute point. Reducing λ shifts the wetting point towards the consolute point
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Figure 6.2: The density profiles of species 1, the larger particles, adsorbed at a wall

with external potential given by Eq. (6.2.7) with λ/R11 = 1, calculated along a path of

constant total density, ρR3
11 = 8.8, i.e. path D in Fig. 6.1 (from left to right the profiles

refer to x = 0.955, 0.9547, 0.9546, 0.9545, 0.9544, 0.9543, 0.9542 and 0.95419, where x is

the concentration of species 2. xcoex. = 0.95418431). The thickness of the adsorbed film

increases slowly as x decreases until the pre-wetting transition, when there is a jump

between x = 0.9546 and 0.9545, (marked J) in the profile, and then the thickness of the

adsorbed film increases continuously as x → x+
coex., indicating complete wetting. The inset

shows the density profiles of species 2 for the same values of x.

and for sufficiently small values there can be a crossover to a critical wetting transition.

For example, when λ/R11 = 0.125, and amplitudes A1 = 1 and A2 = R22/R11 = 0.665,

the wetting point moves well below that for λ/R11 = 1.0, to (x, ρR3
11) = (0.88, 6.9) and

there is no indication of a pre-wetting transition. The adsorption Γ1 appears to diverge

continuously (as − ln(ρ − ρw), where ρw is the value of the total density at the wetting

transition) as we reduce ρ along the binodal. Further work is required to determine how

crossover to critical wetting depends on λ and whether other choices of wall-fluid potential

will also lead to critical wetting. Note that crossover to critical wetting with decreasing

(exponential) wall decay length was observed in a generalization of the Sullivan [67, 68]
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Figure 6.3: The density profiles of species 1, the larger particles, adsorbed at a wall with

external potential given by Eq. (6.2.7) with λ/R11 = 1, calculated along a path of constant

total density, ρR3
11 = 7.0, i.e. path C in Fig. 6.1 (from left to right the profiles refer to

x = 0.99, 0.95, 0.9, 0.89, 0.886, 0.8855, 0.885446, 0.885442 and 0.8854416, where x is the

concentration of species 2. xcoex. = 0.885441572). The thickness of the adsorbed film

increases continuously as x → x+
coex., indicating complete wetting. The inset shows the

density profiles of species 2 for the same values of x. Note that species 2 is depleted from

the region adjoining the wall.

model for a one-component fluid with Yukawa fluid-fluid attraction [69, 15].

6.3.2 Thickness of the wetting film

In this subsection we focus on the details of how the thickness l of the wetting film diverges

for different choices of wall-fluid potentials. Recall from Ch. 3 that in the mean-field de-

scription, as is used in the present study, of wetting for a typical one-component fluid whose

interparticle potential is short-ranged (potential with finite support, Yukawa, exponential

or faster decay) l diverges as −l0 ln δµ, where δµ = (µcoex.−µ) is the difference in chemical

potential from bulk coexistence, provided the wall-fluid potential is also short ranged [11].

The prefactor l0, i.e. the length scale determining the logarithmic growth, depends in a
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Figure 6.4: Plots of the adsorption of species 1, Γ1, at a wall with external potential given

by Eq. (6.2.7) with λ/R11 = 1, along two paths of constant total density as a function

of the logarithm of the deviation from bulk coexistence, ln(x − xcoex.). Fig. A refers to

the path ρR3
11 = 7.0, labeled C in Fig. 6.1, corresponding to the density profiles in Fig.

6.3, which lies below the pre-wetting critical point. Fig. B refers to the path ρR3
11 = 8.8,

labeled D in Fig. 6.1, corresponding to the density profiles in Fig. 6.2, which intersects the

pre-wetting line. The jump in Γ1 occurs at the intersection. On approaching the binodal

Γ1 increases linearly with − ln(x − xcoex.) in both A and B.

subtle way on the relative ranges of the wall-fluid and fluid-fluid interparticle potentials. If

the former decays exponentially with distance from the wall one must compare the decay

length with ξw, the bulk correlation length of the (liquid) phase which is wetting [11, 15].

The amplitude l0 will be determined by which length is longer. On the other hand, for

Gaussian wall-fluid attraction or for a wall-fluid potential with finite support, one expects

the only relevant length scale to be ξw. How does this phenomenology carry over to the

present situation of the binary GCM near a wall?

We begin by noting that for all models where we find complete wetting the calculated

adsorption Γ1 and film thickness l diverge as − ln(x − xcoex.). For the case of Gaussian

wall-fluid potentials, Eq. (6.2.5), we find that regardless of the wall decay length λ, l ∼
−ξw ln(x− xcoex.), i.e. the amplitude is ξw, the bulk correlation length in phase A, rich in

species 1, which is wetting the wall-phase B interface. It is important to define the bulk

correlation length ξ of a binary mixture. This is the exponential decay length describing
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the (common) asymptotic decay of the three partial pairwise total correlation functions

hij(r). ξ can be obtained from the poles of the Fourier transform of hij(r) [52] (see the

description of the calculation of poles in the GCM in Ch. 5.4). All three ĥij(q) have the

same set of poles: qn = ±α1 + iα0. It is the pole with the smallest imaginary part α0

that dominates the decay of hij(r) as r → ∞ and it is this pole that determines the bulk

correlation length: ξ = 1/α0. For the path labeled C in Fig. 6.1, the coexisting (wetting)

phase A is at (x, ρR3
11) = (0.458, 5.30) for which ξw/R11 = 0.905.

A different scenario occurs for a wall potential of the form given by Eq. (6.2.6). Now we

find that the wetting film thickness still grows logarithmically as a function of (x−xcoex.),

but the amplitude l0 is no longer necessarily the bulk correlation length of the wetting

phase, ξw. Rather we find that l ∼ −l0 ln(x − xcoex.) where l0 depends on λ, the wall

potential decay length. When λ < ξw, l0 = ξw, but when λ > ξw, l0 = λ. The variation of

l0 with λ for both types of wall is shown in Fig. 6.5.

These results can be accounted for by considering the following expression for the

surface excess grand potential per unit area (or effective interface potential) of a GCM

subject to a wall potential whose decay is exponential, Eq. (6.2.6):

ωex(l; x) = l[ωb,A − ωb,B ] + γw,A + γA,B + ae−l/ξw + be−l/λ + O(e−2l/ξw , e−2l/λ), (6.3.1)

which is Eq. (3.6.5) suitably generalised for a binary fluid. γw,A is the surface tensions of

the wall-phase A interface, γA,B that of the free A-B interface and a and b are coefficients

that depend on ρ [11, 15]. Eq. (6.3.1) is valid for a complete wetting situation; minimisation

of ωex with respect to l yields the equilibrium film thickness l for a given undersaturation

(x − xcoex.)
2. ωb,B is the grand potential per unit volume in bulk phase B at given

chemical potentials µ1 and µ2, while ωb,A is the corresponding quantity in phase A at the

same chemical potentials. To lowest order in the chemical potential deviations:

[ωb,A − ωb,B ] ' (ρb,A
1 − ρb,B

1 )δµ1 + (ρb,A
2 − ρb,B

2 )δµ2 (6.3.2)

where, as previously, ρb,A
i denotes the bulk coexisting density of species i in phase A etc.

Since δµi ≡ (µi − µi,coex.) ∝ (x − xcoex.), to lowest order, it follows that the first term on

2Note that Eq. (6.3.1) is appropriate for fluid states where the wetting phase (A) at bulk coexistence

lies on the monotonic side of the FW line. This is the case for path C in Fig. 6.1. If the wetting phase

lies on the oscillatory side of the FW line the term in exp(−l/ξw) should be multiplied by a factor of

cos(α1l + φ), where α1 is the real part of the dominating pole and φ is a phase factor – see Ref. [70]
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the right hand side of Eq. (6.3.1) is proportional to (x − xcoex.). If λ < ξw, the term in

exp(−l/ξw) dominates and minimisation yields l ∼ −ξw ln(x − xcoex.) whereas if λ > ξw,

the other exponential dominates and l ∼ −λ ln(x − xcoex.). When the wall potential is a

Gaussian, Eq. (6.2.5), the term in exp(−l/λ) is absent from ωex and minimisation yields

l ∼ −ξw ln(x − xcoex.) for all λ.

Eq. (6.3.1) is not appropriate to the wall potential given by Eq. (6.2.7), i.e. the damped

exponential. Although l diverges logarithmically for all choices of λ and l0 = ξw for

λ < ξw
3, when λ > ξw, l0 is equal to neither ξw nor λ, but is a monotonically increasing

function of λ, see Fig. 6.5. For λ/R11 & 5, l0 increases linearly with λ but with the slope

< 1. This implies that the relevant term in Eq. (6.3.1) is not of the form b exp(−l/λ).

Rather it should be b′ exp(−l/λ′), where the length λ′ ' 0.7λ. Whether such a form for

ωex(l; x) can be derived by the methods of Ref. [15] starting from the full binary mixture

density functional, Eq. (5.2.2), remains to be seen.

6.4 Concluding remarks

We have shown that the binary GCM subject to purely repulsive, short-ranged, wall-fluid

potentials can exhibit a first order wetting transition, with the accompanying pre-wetting,

similar to that found in systems where the fluid-fluid and wall-fluid potentials are explicitly

attractive. Our results illustrate the ubiquity of wetting transitions and related interfacial

phenomena. The wetting transition in the present case is driven by an effective attraction

between the wall and the larger species of Gaussian core particle, which arises from the

fact that the wall potential is longer ranged on the scale of the smaller particles than

on the scale of the larger, leading to strong depletion at the wall of the smaller species.

Generating sufficient effective attraction between the wall and one of the particle species

for a wetting transition to be observed is not only achieved by setting the wall decay length

to be the same in both wall potentials. One could achieve sufficient effective attraction

between the wall and species 1 by setting the amplitude, A2 (see Eqs. (6.2.5) – (6.2.7)), of

the potential acting on the smaller species 2 to be much larger than A1. We also showed

that the precise form of the decay of the wall potential determines the amplitude l0 of

the thickness, l, of a wetting film. For an exponentially decaying wall-fluid potential with

decay length λ, Eq. (6.2.6), l0 is determined by the larger of ξw, the bulk correlation length

3We do not include very small values of λ where the wetting point might lie below ρR3
11 = 7.0.
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Figure 6.5: The pre-factor l0 of the wetting film thickness (l ∼ −l0 ln(x − xcoex.)) versus

the wall potential decay length λ. In all cases the density profiles were calculated along

the constant density path ρR3
11 = 7.0 (path C in Fig. 6.1). For the Gaussian wall (¦)

l0 = ξw, the bulk correlation length of the wetting phase, independent of λ. For the

exponential wall (M) l0 = ξw for λ < ξw and l0 = λ for λ > ξw. For the wall potential

βVi(z) = Ai exp(−z/λ)/(z/λ), z > 0, (◦) l0 = ξw for λ < ξw but has a complex variation

for λ > ξw. The results for the three choices of potential do not appear to depend on the

amplitudes Ai.

in the wetting phase, and λ, i.e. the effective interface potential Eq. (6.3.1) provides an

accurate description of the relevant length scales. However, for a wall potential of the

form (6.2.7), a new length scale may enter which is neither ξw nor λ.

Our results are based upon what is arguably the simplest density functional theory,

namely the mean-field functional (5.2.2), that one might contemplate for any binary fluid

mixture. That such a simple theory should predict such rich wetting behaviour is pleasing,

but we should inquire how our results might be changed by utilizing more sophisticated

functionals. The study of Louis et al. [39] indicated that for a one-component GCM near

a repulsive wall of the type (6.2.7), the mean-field functional yields density profiles close

to those from a functional which generates the HNC closure of the wall-particle Ornstein-

Zernike equation. (Recall that for the bulk structure of the one-component GCM, the
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HNC closure gives results almost indistinguishable from simulation data [39]). For the

binary GCM there are, as yet, no simulation or theoretical results against which we can

test those of the present functional. However, for high total density situations we expect

the random phase approximation and the functional (5.2.2) to be reliable for this soft core

fluid. We speculate that the location of the wetting point might depend sensitively on the

details of the free energy functional but that the gross features of the interfacial phase

behaviour should be captured by the simplest treatment.

The theory we have presented is strictly mean-field; capillary-wave fluctuations are

omitted in this as well as in other, more refined, density functional approaches to wetting.

There is a rich phenomenology associated with these, in particular for systems with short-

ranged forces [11, 15, 18]. It would be of some interest to examine fluctuation effects in

the present model of a binary mixture, especially for those choices of parameters where a

critical wetting transition occurs 4.

Finally we note that in recent studies of a model colloid-polymer mixture at a hard

wall, Brader et al. [50, 51, 71] found layering transitions at points on the binodal, above the

wetting transition point. Although the binary GCM exhibits oscillatory density profiles

at the free fluid-fluid interface (see Ch. 5), similar to those found in Refs. [50, 51, 71], we

do not find any layering transitions in the present model, i.e. the transition from partial

to complete wetting is not accompanied by the pre-cursor layering. Layering transitions

are associated with many body terms in the effective one-component Hamiltonian for the

colloids [50, 51, 71]. Analogous terms are not expected in the present case.

4As we noted in Ch. 3.7, in treatments based on an effective interface potential, it is the dimensionless

parameter ω = (4πβγA,Bξ2
w)−1, where γA,B is the surface tension, which determines the strength of

fluctuation effects. For critical wetting transitions even the exponents depend on ω [11, 18]. For the

present model it might be possible to vary ω over a large range by tuning the parameters of the potentials.





Chapter 7

Solvent Mediated Interactions and

Solvation Close to Fluid-Fluid

Phase Separation

We apply a general density functional approach for calculating the force between two big

particles immersed in a solvent of smaller ones to calculate the solvent mediated (SM)

potential between two big Gaussian core particles in a binary mixture of smaller Gaussian

particles, a simple model of polymers in solution. Within a simple mean field free energy

functional, which generates the random phase approximation (RPA) for the bulk pair direct

correlation functions, the binary solvent exhibits fluid-fluid phase separation and we show

that the theory for calculating the SM potential captures effects of thick adsorbed films sur-

rounding the big solute particles. For a single big particle there is a first order thin-thick

adsorbed film transition and in the thick film regime, i.e. for solvent state points lying close

to the binodal, on the side where the solvent is poor in the species which is favoured by

the big particles, we find extremely attractive, long ranged SM potentials between the big

particles whose range is determined by the film thickness. For state points away from the

binodal in the thin film regime or above the ‘wetting point’ the SM potentials are short

ranged and less attractive. We show that the effects of the thick adsorbed films around

the big particles are not included when the SM potential is obtained from the big-big ra-

dial distribution function gbb(r), calculated using the RPA closure to the Ornstein-Zernike

equations. In the region of the solvent critical point we also find extremely attractive SM

potentials whose range is now set by the bulk correlation length in the binary solvent and

93



94 Solvent Mediated Interactions Close to Fluid-Fluid Phase Separation

which increases and eventually diverges for state points approaching the critical point. We

calculate the excess chemical potential of the big solute particle in the binary solvent as a

function of the concentration of one of the smaller species and show that this quantity also

reflects the formation of thick adsorbed films. The form of the excess chemical potential

and, hence, the solvation for the soft Gaussian core fluid is contrasted with that expected

for a hard core solute.

7.1 Introduction

Effective interactions between big particles immersed in a solvent of other (smaller) par-

ticles play a key role in liquid state physics. For multicomponent fluids of different sized

particles it is often useful to describe the fluid by an effective Hamiltonian, often a sum

of effective pair potentials between the big particles, having integrated out the degrees

of freedom of the small particles [72]. This approach is particularly useful in the case

of colloidal systems, where the colloidal component is usually dilute and its size is very

much larger than that of the particles constituting the solvent. The DLVO potential for

charge stabilized systems [73], the hard-sphere potential for sterically stabilized systems

[22] and the depletion potential for mixtures of colloids and non-adsorbing polymers [74]

and for asymmetric binary mixtures of hard spheres [3] are well-known examples of ef-

fective potentials. In general the form of the effective solvent mediated (SM) potential

between two big particles will depend on the nature of the solvent and the details of the

solvent-particle interaction. However the range of the SM potential should be determined

by the range of correlations in the solvent of small particles. If the solvent is composed

of (small) particles interacting via short-ranged forces (potentials that are of finite range

or that decay exponentially, or faster, with interparticle separation) bulk pairwise correla-

tions decay exponentially with a correlation length that is of order the size of the solvent

particle, provided the solvent is not in a near critical state. Thus, for any thermodynamic

state that is well removed from solvent fluid-fluid phase coexistence we expect to find

short-ranged SM potentials.

In this chapter we examine the situation which arises when two big particles are im-

mersed in a solvent that is close to fluid-fluid (liquid-gas or liquid-liquid) phase separation.

Here we expect correlations in the solvent to take on a different character which should

be reflected in the form of the SM potential. There are two distinct mechanisms to be
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considered. First, critical fluctuations of the solvent, associated with a diverging corre-

lation length, will give rise to long-ranged forces between plates or big particles [75, 76].

Such ‘critical Casimir forces’ are expected to induce flocculation of colloidal particles sus-

pended in near-critical solvents. For a mesoscopic, field-theoretic description of these

critical Casimir forces see Refs. [77, 78, 79, 80, 81]. The second mechanism for generating

long ranged SM potentials is that associated with the growth of thick adsorbed ‘wetting’

films around sufficiently big particles. If one of the solvent phases (species) is preferentially

adsorbed on the surface of the big particles, then on approaching the binodal from the

phase which is not preferentially adsorbed, a thick adsorbed layer can grow around the big

particles. At a planar surface, where complete wetting can occur, the thickness of the wet-

ting film can eventually diverge (become macroscopic) as the bulk binodal is approached

and we have seen examples of this in the last chapter. In the case of big particles, thick

adsorbed films will develop but, because of the finite radius of curvature, the adsorbed

films will remain of finite thickness even at bulk coexistence [11]. The presence of such

‘wetting’ films should induce long-ranged attractive forces between the big particles which

could also be relevant for flocculation in colloidal systems. Indeed aggregation of colloids

in a binary mixture of 2,6-lutidine and water has been observed experimentally by Beysens

and co-workers, reviewed in [82] (see also [83, 84, 85, 86]), and by Maher and co-workers

[87, 88, 89], for state points of the solvent which are near to phase separation. Although

there is still much debate about the interpretation of these experiments and the precise

roles played by ‘wetting’ films, critical fluctuations and by screening effects in the case of

charged colloidal particles [90, 91], it is accepted that adsorbed films have an important

influence on the behaviour of these systems. In charged systems the adsorbed layer is

supposed to be responsible for screening the surface charge on the colloids [90, 91].

There have been several attempts to develop theories of ‘wetting’ induced SM in-

teractions. Much of this work is motivated by the experimental studies of flocculation

phenomena and is summarised in Ref. [92]. A Ginzburg-Landau description [93], an in-

terface potential approach [94, 95] and an interface displacement approach based on a

sharp-kink description of the solvent density distribution [92] have been employed. The

latter two approaches suggest that ‘wetting’ films adsorbed around the big particles can

result in bridging transitions of the adsorbed phase between the two big particles, a phe-

nomenon closely related to capillary condensation, and this could result in the flocculation

of the big particles. Note that bridging is observed in computer simulations of a two di-
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mensional, microscopic model of lipid-protein interactions [96] and the effective attraction

between the big particles resulting from such bridging has been discussed in some detail

[97, 98]. Although well-suited to very big particles where very thick films can develop,

and to systems where dispersion forces dominate, the approach of Ref. [92], which inputs

an idealized density distribution for the solvent particles, is less well-suited to situations

where the size of the solute particles is not vastly bigger than those of the solvent particles,

so that the adsorbed films are thinner, and where dispersion forces do not dominate.

There are, of course, many microscopic theories based upon integral equation ap-

proaches for calculating SM potentials. For general asymmetric solute-solvent mixtures

Amokrane and co-workers [99] have investigated various closure approximations, includ-

ing those which input bridge functions from density functional theory. The SM potential

Wbb(r) is obtained from the relation gbb(r) = exp[−β(vbb(r) + Wbb(r))], where gbb(r) is

the big-big radial distribution function in the limit of infinite dilution of the big parti-

cles. vbb(r) is the direct (bare) potential between the pair of (big) solute particles and

β = (kBT )−1. Integral equation approaches are successful for solvent thermodynamic

states well away from phase separation, but as we shall argue later, theories based upon

the Ornstein-Zernike (OZ) equations do not usually include the effects of thick adsorbed

films and therefore cannot describe properly the SM potential for states near bulk coexis-

tence.

Our present approach is based on a general microscopic method, using density func-

tional theory (DFT). It implements the procedure for including correlation effects in

the solvent developed in the calculation of depletion potentials for hard-sphere mixtures

[4, 48, 3]. The theory makes no assumption about the form of the density distributions so,

in principle, it should apply for all (fluid) states, including those close to the critical point

where a sharp-kink approximation is inappropriate. The procedure is as follows: We first

fix one big particle at the origin and then calculate the equilibrium density profile(s) of

the solvent particles in the external potential due to the big one, i.e. we incorporate the

presence of the ‘wetting’ film if we are near coexistence (or the long range decay of the

density profile(s) if we are near the critical point). We then obtain the SM potential by

inserting a second big particle using the potential distribution theorem [3, 100, 101, 102].

This second step requires a density functional that can describe reliably a mixture of the

solvent and big particles in the limit of vanishing density of big particles [3]. It is not easy

to construct suitable functionals but there has been progress. For example, the Rosenfeld
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functional [103] for additive hard sphere mixtures was used successfully to calculate de-

pletion potentials for both additive [3] and non-additive [48] cases, over a wide range of

size ratios. However, in additive hard-sphere mixtures fluid-fluid demixing does not occur

[23].

Here we investigate SM potentials using the simple RPA functional, that has been

used throughout this thesis for a mixture of soft core repulsive Gaussian particles, which

we believe is also capable of treating mixtures with large size asymmetries. The RPA

is surprisingly accurate for the GCM when the fluid density is sufficiently high. We

introduced the one-component Gaussian core model (GCM) in Ch. 4. Since the GCM

pair potential is purely repulsive the one component fluid does not separate into two fluid

phases. However, a binary mixture of two different sized GCM particles, treated using

the mean-field DFT which generates the RPA for the mixture, does separate into two

fluid phases (see Ch. 5) and exhibits wetting transitions (see Ch. 6) for certain, purely

repulsive, planar walls. Our strategy is to treat, by DFT, a ternary GCM mixture in which

the density of the biggest (repulsive) Gaussian particles ρ0
b → 0. This allows us to study

the effects of solvent critical fluctuations and of thick adsorbed films on the SM potentials

between two of the biggest particles in terms of a particularly simple model.

This chapter is arranged as follows: In Sec. 7.2 we describe the DFT procedure used

to calculate the effective solvent mediated potentials and the RPA functional. Sec. 7.3

describes numerical results and some approximate analytical results for the density profile

and SM potential between two big Gaussian particles immersed in a single component

fluid of smaller GCM particles. We also investigate solvation by calculating µex
b , the

excess chemical potential of a single big particle in this solvent by two different routes,

thereby testing the consistency of the functional. In Sec. 7.4 we present the results for the

SM potential between two big GCM particles immersed in a binary fluid of smaller GCM

particles. We perform the calculations at state points approaching the binodal, in order

to determine the effect of thick adsorbed films on the SM potential. The SM potential

becomes long ranged, the length scale being set by the thickness of the adsorbed film

rather than the sizes of the solvent particles, and strongly attractive. This is in spite of all

the direct particle interactions being repulsive. For certain state points we observe thin-

thick transitions of the adsorbed film and these result in discontinuities (jumps) in the

SM potential and in the derivative of µex
b as a function of the concentration of the smaller

species. Thick adsorbed films have a significant effect on the nature of the solvation. In
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Sec. 7.4.5 we calculate the SM potential along a thermodynamic path which approaches the

critical point. Here we find long ranged attractive SM potentials associated with the long

correlation length in the solvent. Sec. 7.5 discusses the pros and cons of the test particle

and OZ routes to the calculation of gbb(r) and, hence, of the SM potential. We show that

the former route is equivalent to the DFT procedure we employ in earlier sections and that

the OZ route, which uses the RPA direct pair correlation functions c
(2)
ij (r) = −βvij(r),

where vij(r) is the pair potential between species i and j, does not incorporate the effects

of thick adsorbed films and yields, therefore, much less attractive SM potentials. We

also discuss the overall consistency of the test particle route by considering the radial

distribution functions gij(r) in a ternary mixture. Finally in Sec. 7.6 we make some

concluding remarks and discuss the consequences of our results.

7.2 Theory of the solvent mediated potential

7.2.1 General formalism

We follow the presentation in Ref. [3] and consider a multicomponent fluid mixture in the

grand ensemble, where i labels the different species, each with chemical potential µi. The

potential distribution theorem [100, 101, 102] relates the partition function Ξ(rb; {µi}; T )

after a particle of species b has been inserted into the fluid at rb, to the partition function

Ξ̃({µi}; T ), the external potential Vb(r) and the one body density profile ρb(r) of species

b before insertion:

Ξ(rb; {µi}; T ) = exp[βVb(rb) − βµb]Λ
3
bρb(rb)Ξ̃({µi}; T ), (7.2.1)

where Λb is the thermal de Broglie wavelength of species b and β = (kBT )−1. We are

particularly interested in the case where subscript b labels the big particle species (although

Eq. (7.2.1) applies for all species) and where the external potential Vb(r) is that due to

another big particle, species a, i.e. the case where Vb(r) = vab(r), the a-b pair potential.

Then ρb(r) is the density profile of species b due to a particle of species a treated as an

external potential. However, Vb(r) could be the external potential arising from any fixed

object, such as a wall [3]. Combining Eq. (7.2.1) with a well known result from DFT [7, 3]

Λ3
bρb(r) = exp[βµb − βVb(r) + c

(1)
b (r; {µi})], (7.2.2)
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which is the multi-component generalization of Eq. (2.3.13), we can express the one-body

direct correlation function c
(1)
b (r; {µi}) of species b as

c
(1)
b (r; {µi}) = ln

(

Ξ(rb; {µi}; T )

Ξ̃({µi}; T )

)

= βΩ̃({µi}; T ) − βΩ(rb; {µi}; T ). (7.2.3)

i.e. −βc
(1)
b (r; {µi}) is the change in grand potential Ω due to inserting a particle of species

b into the fluid at rb, subject to an external potential Vb(r) = vab(r) exerted by a particle

of species a. From this result we can determine the quantity W̃ab(rb) (without loss of

generality we set ra = 0), which is the difference in the grand potential of the fluid

between the situation where the test particle (species b) is near the fixed particle (species

a) and when it is deep in the bulk, rb → ∞:

βW̃ab(rb) = βΩ(rb; {µi}; T ) − βΩ(rb → ∞; {µi}; T )

= c
(1)
b (rb → ∞; {µi}) − c

(1)
b (rb; {µi}). (7.2.4)

If we evaluate W̃ab(rb) in the low density limit of species b, ρ0
b → 0 (i.e. µb → −∞),

where we have only a single particle of species b, then W̃ab(rb) is the SM potential Wab(rb)

between the particle b and the fixed object (particle) a [3, 23]:

βWab(r) = lim
µb→−∞

W̃ab(r)

= c
(1)
b (r → ∞; {µi6=b}; µb → −∞) − c

(1)
b (r; {µi6=b}; µb → −∞). (7.2.5)

As emphasized in Ref. [3], only the density profiles of the species i 6= b around the fixed

particle a enter into (7.2.5). This simplifies greatly the calculation of the SM potential

since the density profiles {ρi6=b(r)} have the symmetry of the potentials arising from the

fixed particle a. If the latter are spherically symmetrical, i.e. vai(r) ≡ vai(r), i 6= b, then

so are the the density profiles ρi(r) which enter into the calculation of c
(1)
b (r).

7.2.2 Application of the RPA functional

In order to calculate the SM potential from (7.2.5) we use DFT methods to obtain c
(1)
b (r)

[3]. Here we employ a particularly simple, approximate mean field Helmholtz free energy

functional, which is surprisingly accurate for the GCM. The functional is the RPA func-

tional which we used in chapters 5 and 6 to calculate inhomogeneous density profiles for
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planar interfaces in a binary GCM fluid:

F [{ρi}] = Fid[{ρi}] +
1

2

∑

ij

∫

dr

∫

dr′ ρi(r) ρj(r
′)vij(|r − r′|), (7.2.6)

where ρi(r) is the one body density profile of species i and vij(r) is the pair potential

between particles of species i and j (both i and j run over all the species). The ideal gas

part of the free energy functional is

Fid[{ρi}] =
1

β

∑

i

∫

dr ρi(r) [ln(Λ3
i ρi(r)) − 1], (7.2.7)

where Λi is the thermal de Broglie wavelength of species i. In density functional theory

the one body direct correlation function is given by the generalization of Eq. (2.3.14):

c
(1)
b (r) = −β

δ(F [{ρi}] −Fid[{ρi}])
δρb(r)

(7.2.8)

which for the functional (7.2.6) gives:

c
(1)
b (r) = −

∑

i

∫

dr′ ρi(r
′) βvbi(|r − r′|). (7.2.9)

Taking the limit ρ0
b → 0 in (7.2.9) and substituting into (7.2.5) gives the following result

for the SM potential:

βWab(r) =
∑

ν

∫

dr′ (ρν(r
′) − ρ0

ν) βvbν(|r − r′|). (7.2.10)

Here ρ0
ν refers to the bulk density of species ν, where ν denotes all the small species,

ν 6= b. The density profiles ρν(r) entering into (7.2.10) are those calculated around a single

particle of species a, fixed at the origin and exerting an external potential on species ν. We

calculate these density profiles for the external potentials Vν(r) = vaν(r) by minimizing

the grand potential functional

ΩV [{ρν}] = F [{ρν}] −
∑

ν

∫

dr ρν(r) [µν − Vν(r)], (7.2.11)

using (7.2.6) for the Helmholtz free energy functional. The effective potential between two

identical big particles is then the sum of the bare interaction vbb(r) and the SM potential:

veff
bb (r) = vbb(r) + Wbb(r). (7.2.12)
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Recall that the Helmholtz free energy functional (7.2.6) is that which generates the RPA

for the pair direct correlation functions since

c
(2)
ij (r, r′) = −β

δ2(F [{ρi}] −Fid[{ρi}])
δρi(r)δρj(r′)

= c
(2)
ij (|r − r′|) = −βvij(|r − r′|). (7.2.13)

The RPA accounts well for bulk pair correlations at high densities.

7.3 Results for a one-component solvent

In this section we determine the SM potential Wbb(r) between a pair of big particles (b),

immersed in a single component solvent of small particles (ν = s). This involves calculating

first ρs(r), the density profile of the small particles around a single big particle, i.e. we

minimize the functional (7.2.11) which, using (7.2.6), yields the Euler-Lagrange equation

µs = Vs(r) + β−1 ln Λ3
sρs(r) +

∫

dr′ρs(r
′)vss(|r − r′|), (7.3.1)

where Vs(r) = vbs(r). Substituting for the chemical potential µs in terms of ρ0
s, the bulk

density of species s, we obtain

0 = −βVs(r) − ln

(

ρ(r)

ρ0
s

)

+

∫

dr′(ρ0
s − ρs(r

′))βvss(|r − r′|) (7.3.2)

for the equilibrium inhomogeneous density profile. We discuss solutions of this equation

before describing results for Wbb(r), obtained by substituting ρs(r) into Eq. (7.2.10).

7.3.1 Solvent radial distribution function by test-particle route

In this subsection we consider the situation where the external potential is that due to a

small particle s identical to the small particles in the fluid around it, i.e. Vs(r) = vss(r) =

vss(r). In this situation the solution to Eq. (7.3.2) is ρs(r) = ρ0
sg(r) where g(r) is the bulk

radial distribution function of the pure fluid of species s. Introducing the total correlation

function h(r) = g(r) − 1, Eq. (7.3.2) can be expressed as:

h(r) = −βvss(r) + h(r) − ln(1 + h(r)) − ρ0
s

∫

dr′h(r′)βvss(|r − r′|). (7.3.3)

We compare this to the bulk Ornstein-Zernike (OZ) equation, Eq. (2.2.1):

h(r) = c(2)(r) + ρ0
s

∫

dr′h(r′)c(2)(|r − r′|), (7.3.4)
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and note that omitting the second and third terms on the right hand side, Eq. (7.3.3)

reduces to the OZ equation with the RPA (7.2.13) for the pair direct correlation function.

Recall also that the HNC closure, Eq. (2.2.3), is given by [1]:

c
(2)
HNC(r) = −βvss(r) + h(r) − ln(1 + h(r)), (7.3.5)

and it follows that Eq. (7.3.3) has the form of the OZ equation (7.3.4) with the HNC

closure for the pair direct correlation function outside the integral and the RPA closure

inside the integral. When Eq. (7.3.3) is solved self-consistently then the resulting h(r)

will be neither that resulting from the HNC closure nor that from the RPA. As noted in

Ch. 4, Lang et al. [37] and Louis et al. [19] have shown that the HNC approximation is

quasi-exact for a GCM fluid, where the particles interact with a pair potential given by

vss(r) = εss exp(−r2/R2
ss). (7.3.6)

Since we are interested in the regime where Eq. (7.3.6) models the interaction between the

centers of mass of polymer chains, we set εss = 2kBT and the length scale Rss equal to the

radius of gyration. In this case the HNC closure to the OZ equation for h(r) reproduces the

Monte-Carlo results very accurately [19, 37]. Furthermore, the RPA, c
(2)
RPA(r) = −βvss(r),

becomes increasingly accurate at sufficiently high densities, ρ0
sR

3
ss & 5 – see Fig. 4.2. On

solving Eq. (7.3.3) at these densities we find that the resulting h(r) resembles closely that

from the HNC closure (7.3.5). Motivated by this observation, we expect solutions to Eq.

(7.3.2) with a larger sized Gaussian particle as the test particle to be rather accurate.

7.3.2 Density profile of small GCM particles around a single big GCM

particle

We now set the external potential Vs(r) in Eq. (7.3.2) to be that due to a big GCM particle,

located at the origin, exerting an external potential:

Vs(r) = vbs(r) = εbs exp(−r2/R2
bs) (7.3.7)

and we use the following mixing rule for the particle sizes:

R2
bs =

1

2
(R2

ss + R2
bb). (7.3.8)

This non-additive mixing rule was discussed in Ch. 5 and is what drives the fluid-fluid

phase separation in binary mixtures; as remarked earlier, it is based partly on experience
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from computer simulation studies of effective pair potentials in dilute solutions of polymers

[30]. The quantity βεbs ≡ ε∗bs > 0 sets the energy scale. εbs ' 2kBT for polymers of similar

size, but decreases from this value as the size asymmetry between the polymers increases,

reflecting the fact that there is a lower energy penalty for a small polymer coil to sit inside

the coils of a larger polymer.

Having specified the external potential we can solve Eq. (7.3.2) numerically to de-

termine the equilibrium density profile of the small GCM particles in the presence of a

single big GCM particle. This is plotted in Fig. 7.1 for the set of parameters: Rbb/R11 =

7.0, Rss/R11 = 0.665, ε∗bs = 0.8, ε∗ss = 2.0, ε∗bb = 2.0 (the value of ε∗bb is not actually

used in the calculation of the SM potential), and ρ0
sR

3
11 = 7.0, which using (7.3.8), gives

Rbs/R11 = 4.97. (R11 can be thought of as the length scale in the problem. It is actually

the size of a different species of small particles that will be introduced in Sec. 7.4). Before

commenting on the form of the density profile, we describe an approximate analytical

solution to Eq. (7.3.2) for a sufficiently big test particle.

A first approximation to the inhomogeneous density profile, ignoring the interaction

term in Eq. (7.3.2), is:

ρs(r) ' ρ0
s exp[−βvbs(r)] ' ρ0

s[1 − βvbs(r)], (7.3.9)

where we assumed the term in the exponential is small. This is, of course, not necessarily

the case but it motivates the following ansatz for the small particle density profile:

ρs(r) = ρ0
s − ρ∗ exp(−r2/R2

bs), (7.3.10)

where ρ∗ is to be determined. If we assume the density profile is of this form and then

substitute it back into Eq. (7.3.2) and perform the Gaussian integrals we find:

ρs(r) = ρ0
s exp

[

− ε∗bs exp(−r2/R2
bs) + π3/2ε∗ssR

3ρ∗ exp

( −r2

R2
bs + R2

ss

)]

(7.3.11)

where
1

R2
=

1

R2
ss

+
1

R2
bs

. (7.3.12)

When Rbb ∼ Rbs À Rss then R ' Rss, and expanding in Eq. (7.3.11) to O(Rss/Rbs)
2, we

obtain:

ρs(r) ' ρ0
s exp

[

− (ε∗bs − π3/2ε∗ssR
3
ssρ

∗) exp(−r2/R2
bs)

]

. (7.3.13)
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Provided (ε∗bs − π3/2ε∗ssR
3
ssρ

∗) is small then

ρs(r) ' ρ0
s

[

1 − (ε∗bs − π3/2ε∗ssR
3
ssρ

∗) exp(−r2/R2
bs)

]

, (7.3.14)

which is of the same form as Eq. (7.3.10), with ρ∗ = (ε∗bs − π3/2ε∗ssR
3
ssρ

∗)ρ0
s. This result

can be rewritten as

ρ∗ =
ρ0

sε
∗
bs

1 + βv̂0
ssρ

0
s

(7.3.15)

where

v̂0
ij = v̂ij(0) =

∫

dr vij(r) = π3/2εijR
3
ij , (7.3.16)

is the zeroth Fourier coefficient of the pair potential. Inputting the same pair potential

parameters and bulk density ρ0
sR

3
11 = 7.0 as used earlier, Eq. (7.3.15) gives ρ∗R3

11 = 0.234.

The approximate density profile, Eq. (7.3.10), with this value for ρ∗ is plotted (dashed line)

alongside the full solution to Eq. (7.3.2) (solid line) in Fig. 7.1. The value for ρ∗ calculated

from Eq. (7.3.15) is much smaller than the non interacting (ideal gas) result ρ0
sε

∗
bs that

would result if Eq. (7.3.9) were the correct solution, i.e. correlations in the fluid have a

significant effect. Note that Eq. (7.3.10) is an approximate solution, but it is correct up to

terms of order O(Rss/Rbs)
2, and provided the fixed particle is sufficiently big, Eq. (7.3.10)

is a good approximation to the full solution, becoming increasingly accurate as Rss/Rbs →
0. Strikingly, for intermediate values of Rss/Rbs it is a very good approximation, as can

be seen in Fig. 7.1.

However, this simple ansatz, Eq. (7.3.10), for the density profile does not describe the

correct asymptotic decay behaviour r → ∞, of the small particle density profile. We know

that within the RPA for the one-component GCM, the ultimate asymptotic decay into

bulk of the radial distribution function, gss(r) is always exponentially damped oscillatory

for a pure fluid of GCM particles – see Sec. 5.4. It follows from general considerations

that the density profile ρs(r) around the big fixed particle should also be exponentially

damped oscillatory as r → ∞ [49, 52]. Thus we expect

(ρs(r) − ρ0
s) ∼ A

r
exp(−α0r) cos(α1r − θ), r → ∞ (7.3.17)

where the decay length α−1
0 and the wavelength 2π/α1 are the same as those characterizing

the decay of gss(r), while A is an amplitude and θ is a phase factor which depend on vbs(r).

It turns out that because the external potential due to the big test particle is slowly

varying on the scale of the small particles, the amplitude, A, of the damped oscillatory
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Figure 7.1: The density profile of small GCM particles, radius Rss/R11 = 0.665, around

a single big GCM particle located at the origin with radius Rbb/R11 = 7.0 (Rbs/R11 =

4.97, ε∗bs = 0.8 and ε∗ss = ε∗bb = 2.0) for a bulk density ρ0
sR

3
11 = 7.0. The solid line is the

full numerical solution to Eq. (7.3.2) and the dashed line is the approximate analytical

solution, Eq. (7.3.10). In the inset we plot the same data but now ln([ρ0
s − ρs(r)]rR

2
11)

is plotted versus r/R11 so that any oscillations in the density profile would show clearly.

None can be seen; numerical noise sets in for r/R11 ≥ 12. Moreover there is no straight

line tail, which would be indicative of an exponentially decaying tail in the density pro-

file. Rather the decay is effectively Gaussian because the amplitude of the exponentially

damped oscillatory decay term is extremely small – see text.

contribution is very small. Indeed it is impossible to detect the contribution (7.3.17) in

numerical results and Eq. (7.3.10) remains a good approximation to the density profile

even at large separations r.

Although there is no general theory for obtaining A and θ via the test particle route

we can estimate the amplitude A using the OZ equation. (A more detailed account of

these methods can be found in Ch. 5 and Refs. [49, 52]). The Fourier transformed (FT)

OZ equation for the total pair correlation function hbs(r) = gbs(r) − 1 = (ρs(r) − ρ0
s)/ρ0

s,
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in a binary fluid of big and small GCM particles is (see Eqs. (5.4.1) – (5.4.3))

ĥbs(q) =
ĉbs(q)

D(q)
, (7.3.18)

where the denominator is given by

D(q) = [1 − ρ0
b ĉbb(q)][1 − ρ0

s ĉss(q)] − ρ0
bρ

0
s ĉ

2
sb(q). (7.3.19)

ĉij(q) is the FT of c
(2)
ij (r), the pair direct correlation function. In the limit of infinite

dilution of the big ones, ρ0
b → 0, D(q) = [1 − ρ0

s ĉss(q)]. Inverting the FT in (7.3.18) we

obtain

rhbs(r) =
1

4π2i

∫ ∞

−∞
dq q exp(iqr)ĥbs(q)

=
1

4π2i

∫ ∞

−∞
dq q exp(iqr)

ĉbs(q)

[1 − ρ0
s ĉss(q)]

(7.3.20)

which can be evaluated by contour integration; the singularities of ĥbs(q) are simple poles.

As in Eq. (5.4.6), choosing an infinite radius semi-circle in the upper half of the complex

plane, we obtain

rhbs(r) =
1

2π

∑

n

Rbs
n exp(iqnr) (7.3.21)

where Rbs
n is the residue of qĉbs(q)/D(q) for the nth pole at q = qn. The qn are solutions

of D(qn) = 0 and there are normally an infinite number of poles – see Ch. 5. For the

one component GCM fluid there are no purely imaginary poles within the RPA, so the

asymptotic decay is always damped oscillatory.

Calculating the residue of qĉbs(q)/[1 − ρ0
s ĉss(q)] within the RPA, we find for the nth

pole

Rbs
n =

qnĉbs(qn)

−ρ0
s(−qnR2

ss/2)ĉss(qn)

=
2v̂0

bs

ρ0
sR

2
ssv̂

0
ss

exp(−q2
n(R2

bs − R2
ss)/4), (7.3.22)

where we have used the RPA result for the pair direct correlation function:

ĉij(q) = −βv̂0
ij exp(−q2R2

ij/4). (7.3.23)

The pole with the smallest value of α0 is the one that gives the leading asymptotic decay

of hbs(r). This pole has α1 ' π/Rss, and |α1| > |α0|, so q2
n = α2

1 − α2
0 + 2iα1α0 '

α2
1 + 2iα1α0. When Rbs À Rss, the real part of the exponential factor in (7.3.22) is '
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exp(−(πRbs/2Rss)
2). Inserting the ratio Rbs/Rss = 7.47, the value used in the calculation

of the density profile in Fig. 7.1, gives a factor ' exp(−140) in the residue and thus

in the amplitude of the exponentially damped oscillatory decay term in hbs(r). This

implies that the amplitude of the oscillations in hbs(r), obtained from the OZ route, are so

small as to be undetectable. The results for the density profile ρs(r), obtained from Eq.

(7.3.2), are consistent with this observation, as illustrated in the inset to Fig. 7.1, where

ln([ρ0
s − ρs(r)]rR

2
11) is plotted against r. Any oscillations, with a reasonable amplitude,

should be readily visible in such a plot but there is no sign of these before numerical noise

sets in at very large separations. We conclude that the decay of the density profile of small

GCM particles around a single big one is effectively Gaussian and that the approximate

density profile, Eq. (7.3.10), captures much of the physics.

7.3.3 The SM potential

Having determined the density profile of the small particles we can now calculate the SM

potential between two big particles by inserting this profile into Eq. (7.2.10), with ν = s,

denoting the single component solvent of small particles. The SM potential plotted in

Fig. 7.2, corresponds to the density profile displayed in Fig. 7.1, i.e. bulk density ρ0
sR

3
11 =

7.0. We can also employ our approximate, analytical density profile, Eq. (7.3.10). On

substituting this into Eq. (7.2.10) and performing the Gaussian integrals, we find a simple

formula:

βW pure
bb (r) = −(π/2)3/2ε∗bsρ

∗R3
bs exp(−r2/2R2

bs), (7.3.24)

for the SM potential in a one component solvent of GCM particles. This result is also

plotted in Fig. 7.2. Since the approximate density profile, Eq. (7.3.10), captures all of

the features of the true density profile (solution to Eq. (7.3.2)) we expect Eq. (7.3.24)

to describe accurately the true SM potential. Indeed, as can be seen from Fig. 7.2, Eq.

(7.3.24) (dashed line) accounts for the numerically calculated SM potential (solid line) very

well for all separations r. The SM potential is strongly attractive (Wbb(r = 0) ' −45kBT

for ρ0
sR

3
11 = 7.0). This large amplitude is associated with the factor ρ∗R3

bs in Eq. (7.3.24);

this is roughly the number of small particles expelled from the volume of the big one. In

high density states this factor is large and it is this number multiplied by the individual big-

small interaction energy, εbs, that determines the overall energy scale of the SM potential.

When the small particle bulk density ρ0
s is large, ρ∗ is only weakly dependent on ρ0

s,
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Figure 7.2: The SM potential between two big GCM particles with radius Rbb/R11 = 7.0 in

a pure solvent of small GCM particles of radius Rss/R11 = 0.665 (Rbs/R11 = 4.97, ε∗bs = 0.8

and ε∗ss = ε∗bb = 2.0) for a bulk density ρ0
sR

3
11 = 7.0. The solid line is the numerical result,

Eq. (7.2.10), and the dashed line is the approximate analytical solution, Eq. (7.3.24). Note

the vertical scale; the SM potential is strongly attractive – see text.

i.e. ρ∗ ' εbs/v̂0
ss (see Eq. (7.3.15)). The strength of the (attractive) SM potential is an

indication that the big GCM particles will not be very soluble in the fluid of small GCM

particles. We shall return to this issue in Sec. 7.6.

We can also calculate the SM potential between two different sized big Gaussian par-

ticles (a and b) immersed in a pure solvent of smaller ones. The resulting SM potential

should be symmetric under a-b interchange W pure
ab (r) = W pure

ba (r). If we employ the ap-

proximate analytical result (7.3.10) for the profile the symmetry is respected. We rewrite

Eq. (7.3.10), using Eq. (7.3.15), for the case where the fixed big particle is species a:

ρs(r) − ρ0
s = − ρ∗

εas
vas(r) = − ρ0

s

1 + βv̂0
ssρ

0
s

βvas(r). (7.3.25)

Substituting in Eq. (7.2.10) it follows that

βW pure
ab (r1) =

∫

dr2(ρs(r2) − ρ0
s)βvbs(|r1 − r2|)

=

(

− ρ0
s

1 + βv̂0
ssρ

0
s

)

β

∫

dr2vas(r2)βvbs(|r1 − r2|) (7.3.26)
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which is easily shown to be identical to βW pure
ba (r1), obtained by calculating the profile

around a fixed particle of species b. This symmetry between Wab(r) and Wba(r) also

appears to be present in a numerical calculation, using the route outlined in Sec. 7.2.2,

of the SM potential in a pure solvent. However, when the calculation is extended to

that of a binary solvent (i.e. adding a fourth species, of small particles, to the two large

species a, b and the small (solvent) species s already present) we find that when the

binary solvent is near fluid-fluid phase separation, the symmetry Wab(r) = Wba(r) is

not respected. This asymmetry becomes evident when there is a significant difference

between the sizes of particles a and b and when the solvent phase is very close to the

fluid-fluid phase boundary. Moreover we believe that the symmetry is not perfect in other

situations, including that where there is a pure solvent, i.e. W pure
ab (r) 6= W pure

ba (r) although

any differences are extremely small. This point is discussed further in Sec. 7.5.

7.3.4 The excess chemical potential of the big particle

A key quantity in the physical chemistry of solutions is the excess chemical potential of

the solute. Within DFT there are different routes to this quantity. The consistency test

for our approximate Helmholtz free energy functional, Eq. (7.2.6), concerns the excess

chemical potential of a single big particle. The potential distribution theorem states that

−β−1c
(1)
b (r) is the excess grand potential for inserting a particle of species b at r in the

inhomogeneous fluid [3, 100]. It follows that −β−1c
(1)
b (∞) = µex

b , the ρ0
b → 0 limit of the

excess chemical potential of the big particles in a homogeneous mixture of big and small

particles1. In this limit, ρ0
b → 0, we set ρs(r) = ρ0

s (a constant bulk density) in Eq. (7.2.9)

and we obtain the simple result:

µex
b = −β−1c

(1)
b (∞) = ρ0

s

∫

dr vsb(r) = ρ0
s v̂

0
sb. (7.3.27)

Of course, the same result is obtained from the free energy of the bulk mixture. The free

energy density of the bulk mixture, see Eq. (7.2.6), is

f({ρ0
i }) = fid({ρ0

i }) +
1

2

∑

ij

ρ0
i ρ

0
j v̂

0
ij , (7.3.28)

1Note that exp(−βµex
b ) = limρ0

b
→0(ρ

0
b/zb) = h(zs), Henry’s law constant, with zb, the activity of the

big particles given by zb = Λ−3
b exp(βµb). h(zs) provides a measure of the average big-small interaction.

See e.g. Ref. [104]
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and in the limit ρ0
b → 0, one finds µex

b = ∂(f −fid)/∂ρ0
b = ρ0

s v̂
0
sb. We can shed further light

on the status of Eq. (7.3.27) by considering the following, formally exact, Kirkwood-Hill

formula for µex
b in the ρ0

b → 0 limit [100, 104, 105, 106]:

µex
b =

∫ 1

0
dλ

∫ ∞

0
dr 4πr2ρ0

sgbs(r; λ)vbs(r), (7.3.29)

where λ is a parameter which ‘turns on’ the big-small external potential vbs(r) and gbs(r; λ)

is the big-small radial distribution function corresponding to the potential λvbs(r), with

0 ≤ λ ≤ 1, and density ρ0
s for the small particles. For hard-core particles (7.3.29) is limited

in its usefulness, however for the present soft core GCM, it is illuminating. We see that

if we make the simplest approximation: gbs(r; λ) ≡ 1, for all λ, then the integrand of Eq.

(7.3.29) is independent of λ and using Eq. (7.3.16) and Eq. (7.3.29) we find the same result

as Eq. (7.3.27). This treatment demonstrates the mean-field nature of the approximation

for the bulk free energy of the mixture which is used in deriving Eq. (7.3.27).

The excess chemical potential, µex
b , can be calculated by a very different route, thereby

testing the functional’s internal consistency. Now we treat the single big GCM particle,

centered at the origin, as an external potential acting on the small GCM particles and

calculate µex
b directly as an excess grand potential:

µex
b =

∫ ∞

0
dr 4πr2 (ω(r) − ω(∞)) (7.3.30)

where ω(r) is the grand potential density and ω(∞) = −P , the bulk pressure. From Eq.

(7.2.11), ω(r) is given by

ω(r) = f(r) − ρs(r)[µs − vbs(r)] (7.3.31)

where ρs(r) is the density profile of the small GCM particles around the big GCM particle,

given by solving Eq. (7.3.2). f(r) is the intrinsic Helmholtz free energy density, which from

Eq. (7.2.6) is

f(r) =
1

β
ρs(r)[ln(Λ3

sρs(r)) − 1] +
1

2
ρs(r)

∫ ∞

0
dr′ρs(r

′)ṽss(r, r
′) (7.3.32)

where

ṽss(r, r
′) =

2πr′

r

∫ r+r′

r−r′
dτ τ vss(τ)

=
−πεssR

2
ssr

′

r
[exp(−(r + r′)2/R2

ss) − exp(−(r − r′)2/R2
ss)]. (7.3.33)
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The equilibrium density profile ρs(r) satisfies Eq. (7.3.2), which can be re-expressed as

µs =
1

β
ln

(

Λ3
sρs(r)

)

+

∫ ∞

0
dr′ρs(r

′)ṽss(r, r
′) + vbs(r). (7.3.34)

Using Eqs. (7.3.32) and (7.3.34) we can write the grand potential density in Eq. (7.3.31)

as:

ω(r) = − 1

β
ρs(r) − 1

2
ρs(r)

∫ ∞

0
dr′ρs(r

′)ṽss(r, r
′). (7.3.35)

In the limit of a uniform (bulk) fluid this reduces to

ω(∞) = − 1

β
ρ0

s − 1

2
(ρ0

s)
2v̂0

ss = −P (7.3.36)

where ρ0
s is the bulk density. In order to calculate µex

b from Eq. (7.3.30), we could insert the

density profile ρs(r) calculated from the Euler-Lagrange equation (7.3.34) into (7.3.35) and

then numerically integrate to obtain µex
b . However we can also calculate µex

b analytically

using the approximate density profile Eq. (7.3.10). We showed that this approximation is

correct up to terms of O(Rss/Rbs)
2. On inserting Eq. (7.3.10) into Eq. (7.3.30), performing

the Gaussian integrals and then expanding in powers of (Rss/Rbs) we find (see Appendix

C):

µex
b = ρ0

s v̂
0
bs −

√
2v̂0

ssv̂
0
bs

8εbs
(ρ∗)2 + O

(

Rss

Rbs

)2

. (7.3.37)

The first term in Eq. (7.3.37) is that given by Eq. (7.3.27), the first route to µex
b . When

Rbs À Rss, the correction terms are very small. Indeed, if one includes the second term in

Eq. (7.3.37), then one obtains almost exactly the same result as that from the numerical

calculation of µex
b , i.e. inputting the density profile calculated numerically from the Euler-

Lagrange equation (7.3.2). For example, using the pair potential parameters given in text

between Eqs. (7.3.8) and (7.3.9) and a bulk density ρ0
sR

3
11 = 7.0 yields βρ0

s v̂
0
bs = 3833,

whilst the first two terms in Eq. (7.3.37) give βµex
b = 3833 − 22 = 3811, which should be

compared to βµex
b = 3806 from the full numerical calculation. It is clear that there is a

high level of consistency within our functional for the calculation of µex
b , provided the bulk

density is sufficiently high, ρ0
sR

3
ss & 5.0 and the ratio Rbb/Rss is sufficiently large.

We can again use the Kirkwood-Hill formula for µex
b , Eq. (7.3.29), to examine the

status of Eq. (7.3.37). Inserting gbs(r; λ) = 1 + hbs(r, λ), where hbs(r, λ) is the big-small

total pair correlation function, into Eq. (7.3.29) we find

µex
b = ρ0

s v̂
0
sb +

∫ 1

0
dλ

∫ ∞

0
dr 4πr2ρ0

shbs(r; λ)vbs(r). (7.3.38)
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In the ρb → 0 limit, the OZ equation for h(r; λ) in Fourier space is (see Eqs. (7.3.18) and

(7.3.19)):

ĥbs(q; λ) =
ĉbs(q; λ)

1 − ρ0
s ĉss(q)

, (7.3.39)

where ĉss(q) refers to the direct correlation function of the pure fluid of species s. Within

the RPA closure, ĉbs(q; λ) = −λβv̂bs(q) and

hbs(r; λ) = λhbs(r; λ = 1). (7.3.40)

We can use Eq. (7.3.40) with Eq. (7.3.10) for the density profile corresponding to the

external potential (7.3.7), to obtain an approximate form for hbs(r; λ), i.e.

hbs(r; λ) = −λρ∗

ρ0
s

exp(−r2/R2
bs). (7.3.41)

When Eq. (7.3.41) is inserted into Eq. (7.3.38) we find, on performing the Gaussian inte-

gral,

µex
b = ρ0

s v̂
0
bs −

√
2

8
v̂0
bsρ

∗. (7.3.42)

From Eq. (7.3.15) we note that when ρ0
s is large, then ρ∗ ' εbs/v̂0

ss. Using this further

approximation we find that the second terms on the right hand side of both Eq. (7.3.37)

and Eq. (7.3.42) are equal. Indeed, for the bulk density ρ0
sR

3
11 = 7.0 we find that there

is only a very small difference between the results of Eq. (7.3.37) and Eq. (7.3.42). The

present derivation shows explicitly that the second term in Eq. (7.3.37) is a manifestation

of correlation effects in the small particle fluid.

Finally, we note that the form of the excess chemical potential of the solute particle,

µex
b , in the present soft core system is completely different from that which one finds for

hard core particles. For particles with hard core repulsion one must create a cavity of

radius Rb in the solvent in order to insert a single big hard sphere of radius Rb and µex
b

takes the form [100, 107]:

µex
b =

4

3
πR3

bP + 4πR2
bγ(Rb), (7.3.43)

where the first term represents the work done against the pressure of the solvent to create

spherical cavity of radius Rb. The second term is the free energy of the particle (spherical

wall)-interface; it is proportional to the surface area of the cavity. γ(Rb) is the surface

tension of the spherical wall-fluid interface and for large Rb it is usually assumed this

quantity can be expanded as follows:

γ(Rb) = γ(∞)

(

1 − 2δ

Rb
+ ...

)

(7.3.44)
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where δ is the analogue of the Tolman length [100, 107]. γ(∞) is the surface tension of

the fluid at the corresponding planar wall. Comparing Eq. (7.3.43) with the result for a

big GCM particle, Eq. (7.3.37), we see that there is a significant difference between the

two. For a hard core system, µex
b is determined primarily by surface effects, i.e. how the

solvent behaves at the interface with the big particle. However, for the soft core system

it is determined by the solvent behaviour inside the big solute particle. We return to the

role of the interfacial tension in determining µex
b when we consider thick adsorbed films in

the next section.

7.4 Results for the binary mixture solvent

Here we consider the SM potential for the situation where two big GCM particles are

immersed in a binary solvent of small GCM particles. We follow the route described in

the previous section, using the notation where the subscript ν is either 1 or 2, referring to

the two different sized smaller particles. All species interact via a pair potential: vij(r) =

εij exp(−r2/R2
ij) with the non-additive mixing rule R2

ij = 1
2(R2

ii +R2
22), where i, j = 1, 2, b,

i.e. we employ the three component generalizations of Eqs. (7.3.6), (7.3.7) and (7.3.8).

7.4.1 Phase diagram of the binary solvent

For the solvent we consider a binary mixture which exhibits fluid-fluid phase separation

and choose pair potential parameters corresponding to a binary solution of polymers of

length ratio 2:1; this is the system that we considered in chapters 5 and 6. The pair

potential parameters are as follows: R22/R11 = 0.665, ε∗11 = ε∗22 = 2.0 and ε12/ε11 = 0.944

and the phase diagram of the binary solvent is plotted in the total density, ρ0 = ρ0
1 + ρ0

2,

concentration, x = ρ0
2/ρ0, plane in Fig. 7.3 (see also Fig. 5.1). For low total density the

binary solvent is in a mixed state, but for higher values the fluid separates into two fluid

phases. The critical point is at x = 0.71 and ρ0R3
11 = 5.6. Also plotted in Fig. 7.3 are the

spinodal and the Fisher-Widom line where the asymptotic decay, r → ∞, of the bulk total

pair correlation functions hij(r) crosses over from monotonic to exponentially damped

oscillatory. These cross over lines are calculated by analysing the zeros of D(q) in Eq.

(7.3.19) – see Ch. 5.4.
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Figure 7.3: The bulk phase diagram for a binary mixture of GCM particles with ε12/ε11 =

0.944 and R22/R11 = 0.665, equivalent to a mixture of two polymers with length ratio

2:1. ρ0 is the total density and x is the concentration of the smaller species 2. The gray

lines are lines of constant pressure; the lowest is at reduced pressure PβR3
11 = 100, the

next at PβR3
11 = 150, then 200 and the subsequent ones increase in increments of 100.

The dashed line denotes the Fisher-Widom (FW) line where the asymptotic decay of the

bulk pairwise correlation functions crosses over from exponentially damped oscillatory to

monotonic. The solid line in the bottom right corner denotes a line of crossover from

asymptotic oscillatory decay with a certain wavelength to a similar oscillatory decay but

with a different wavelength – see Ch. 5.4. The arrow labeled A indicates the path along

which the density profiles in Fig. 7.4 are calculated, and that labeled B approaching

the critical point is the path for the density profiles in Fig. 7.10. C is the path for the

density profiles in Fig. 7.5 and D is the path for the density profiles in Fig. 7.6. Path D

intersects what we term the thin-thick transition line (solid line whose ends are denoted

by filled circles). This line refers to the thin-thick film transition of the binary fluid

adsorbed around a big GCM particle with pair potential parameters ε∗b1 = 1.0, ε∗b2 = 0.8,

ε∗bb = 2.0 and Rbb/R11 = 7.0. It meets the binodal at the ‘wetting point’ (upper circle)

with x = 0.96 and ρ0R3
11 = 9.15 and terminates at a critical point (lower circle) with

x = 0.94 and ρ0R3
11 = 7.5.
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7.4.2 Density profiles of the binary mixture around a single big GCM

particle

For the big particle we choose the pair potential parameters ε∗b1 = 1.0, ε∗b2 = 0.8, ε∗bb = 2.0

and Rbb/R11 = 7.0, and the mixing rules give Rb1/R11 = 5.00 and Rb2/R11 = 4.97. These

parameters are such that the big-species 2 parameters are the same as the big-small pair

potential parameters of the previous section. We calculate the density profiles ρν(r) of

the two small GCM species, ν = 1, 2, around a single big GCM particle by minimizing the

grand potential functional given by Eqs. (7.2.11) and (7.2.6). The external potentials in

(7.2.11) are Vν(r) = vbν(r) = εbν exp(−r2/R2
bν), ν = 1, 2 and the Euler-Lagrange equations

are straightforward generalisations of Eq. (7.3.1). In Fig. 7.4 we display the density profiles

ρν(r) for a constant total density path ρ0R3
11 = 6.9, approaching the binodal (this is path A

in Fig. 7.3). The Gaussian form for ρ2(r), the density profile of species 2, (see Eq. (7.3.10))

that was found for the one component solvent (previous section), remains accurate for low

concentrations of species 1 (i.e. for x > 0.98). However, even at these low concentrations

the density profile of species 1, ρ1(r), cannot be described by a Gaussian of the form

ρ1(r) = ρ0
1 + ρ∗1 exp(−r2/R2

b1). Note the plus sign in the right hand side of this equation;

the density ρ1(r = 0) > ρ0
1, the bulk value, even for low concentrations of species 1. We

often find clustering of species 1 in the volume enclosed by the big test particle when

species 1 is the minority solvent component. This was also observed in calculations of

hij(r) using the HNC closure to the OZ equations for less asymmetric size ratios in the

binary GCM [47]. Decreasing x further, i.e. increasing the concentration of species 1,

ρ2(r) loses the Gaussian form given by Eq. (7.3.10). As x is decreased, keeping the total

bulk density, ρ0, constant, we approach the bulk binodal and the density profiles begin to

show the development of films of the coexisting phase. In particular a ‘knee’ develops in

the density profile of both species which is different from the smooth Gaussian-like form

– see Fig. 7.4. The knee has a similar shape to that one would find in the profiles of a

‘wetting’ film around a very big hard core spherical particle. Note that the thickness of

the adsorbed film around the spherical GCM particle does not diverge at bulk coexistence,

as it does in the planar wetting geometry, but tends to a finite thickness which is limited

by the finite curvature of the fixed particle or spherical wall [11]. This is clear from the

plot of the adsorption of species 1 around the big particle,

Γ1 =

∫ ∞

0
dr 4πr2(ρ1(r) − ρ0

1), (7.4.1)
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shown in the inset to Fig. 7.4. Γ1 is plotted versus the logarithm of the deviation from

bulk coexistence, ln(x − xcoex), for two reasons. First, in order to display the region

close to coexistence, and second because Γ1 diverges logarithmically at a planar wall for

systems which exhibit short-ranged wall-fluid and fluid-fluid potentials – see chapters 3

and 6. We do see a linear portion in the inset to Fig. 7.4, indicative of some logarithmic

film thickening. However, near to coexistence, Γ1 saturates at its curvature limited value.

For x away from the binodal, in a regime where there is no adsorbed film, the adsorption

increases slowly as x decreases, and the gradient of Γ1 as a function of ln(x − xcoex) has

a much smaller magnitude than it does when there is a thick adsorbed film. Profiles very

similar to those in Fig. 7.4 are obtained for the slightly higher total density ρ0R3
11 = 7.0

– see Fig. 2 of Ref. [108].

If one calculates the density profiles around the big GCM particle at higher total

densities, one finds very different behaviour. For example, in Fig. 7.5 we show some

typical density profiles calculated at constant total bulk density, ρ0R3
11 = 9.5, approaching

the binodal on path C in Fig. 7.3. In this case no thick adsorbed films develop for any

concentration x. For paths at fixed total density in the range 9.15 & ρ0R3
11 & 7.5 we find

a thin-thick film transition as x is decreased towards xcoex. In Fig. 7.6 we display some

typical density profiles, calculated on path D in Fig. 7.3 at constant total bulk density,

ρ0R3
11 = 8.5. For large values of x (& 0.957) there is no adsorbed film, and the density

profiles resemble those of Fig. 7.5. However for concentrations x . 0.956 there is a thick

adsorbed film which develops in a similar fashion to that in Fig. 7.4 as x → xcoex (Note,

however, that the profiles in Fig. 7.6, are much steeper than those of Fig. 7.4, since these

state points are much further from the bulk critical point than the state points where the

profiles of Fig. 7.4 were calculated). There is a discontinuity in the film thickness between

x = 0.957 and 0.956 which leads to a discontinuity in the adsorption of each species. Γ1

is plotted in the inset to Fig. 7.6 and the jump signals the thin-thick transition. Within

the present mean-field treatment this is a first order phase transition; the derivative with

respect to x of the excess grand potential of the fluid exhibits a discontinuity at the

transition point. Beyond mean-field, finite-size effects will round the transition since a

finite amount of adsorbed fluid is involved if the fixed big particle has a finite radius. We

shall return to the rounding of the transition in Sec. 7.6.

By performing calculations of density profiles and adsorption as a function of x for a

series of bulk densities ρ0R3
11 one can map out a line of thin-thick transitions in the (ρ0, x)
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Figure 7.4: The density profiles of a binary solvent of small GCM particles, radii R11

and R22 with R22/R11 = 0.665, around a big GCM test particle with Rbb/R11 = 7.0

(Rb1/R11 = 5.0, Rb2/R11 = 4.97, ε∗b1 = 1.0, ε∗b2 = 0.8 and ε∗11 = ε∗22 = 2.0), calculated at

constant total bulk density ρ0R3
11 = 6.9 approaching the binodal (path A in Fig. 7.3). The

profiles refer to concentration x = ρ0
2/ρ0 = 0.99, 0.95, 0.94, 0.93, 0.925, 0.92, 0.91, 0.9,

0.89, 0.88, 0.879, and 0.8788 (xcoex. = 0.87871). The top set of profiles are those of the

smaller of the two species, species 2. The very top one is the profile for x = 0.99 and the

one below is for 0.95 etc. The set of profiles at the bottom correspond to species 1; the

very lowest profile is at x = 0.99, the one above it is for 0.95 etc. There is a pronounced

change in shape of the density profiles, from roughly Gaussian away from coexistence, to

a non-Gaussian shape with a flat portion near the origin and a free interface-like ‘knee’

characterizing a thick adsorbed film of the coexisting phase, rich in species 1, growing

around the big GCM particle close to coexistence. The inset shows Γ1, the adsorption of

species 1, plotted versus ln(x − xcoex). Note that the film thickness and Γ1 saturate as

x → xcoex.
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Figure 7.5: As in Fig. 7.4 but now profiles are calculated at constant total bulk density,

ρ0R3
11 = 9.5 approaching the binodal (path C in Fig. 7.3). Results refer to x = 0.99, 0.98,

0.97 and x = xcoex = 0.96682. This path is above the ‘wetting point’; there are no thick

adsorbed films films.

plane. This line is shown in the phase diagram of Fig. 7.3 for a big particle with radius

Rbb/R11 = 7.0. It terminates at low ρ0 in a critical point near x = 0.94 and ρ0R3
11 = 7.5;

below this total density there is no discontinuity in the adsorption as x is reduced and

the film thickens continuously c.f. Fig. 7.4. The thin-thick transition line meets the bulk

coexistence curve at the point x = 0.96 and ρ0R3
11 = 9.15. We confirmed that on following

the binodal, starting from high values of ρ0R3
11, no thick adsorbed films were present (the

profiles were similar to those of Fig. 7.5) until we reached the point when the adsorption

jumped discontinuously.

This scenario is, of course, similar to that which occurs for a first order wetting tran-

sition at a planar substrate – see Chs. 3 and 6. There the adsorption measured along the

bulk coexistence curve jumps discontinuously from a finite value in the partial wetting

regime above the wetting point to an infinite value and below this point there is a pre-

wetting line of first order thin-thick film transitions out of bulk coexistence, see Fig. 6.1.

The pre-wetting line meets the bulk coexistence curve tangentially – a consequence of the
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Figure 7.6: As in Fig. 7.4 but now profiles are calculated at constant total bulk density,

ρ0R3
11 = 8.5 approaching the binodal (path D in Fig. 7.3). Results refer to x = 0.99, 0.97,

0.96, 0.959, 0.958, 0.957, 0.956, 0.955, 0.95, 0.948, 0.9473 and 0.9472 (xcoex = 0.94716).

Note the jump in the profiles between 0.957 and 0.956, signaling the thin-thick film tran-

sition. The latter can also be identified from the jump in the adsorption Γ1, see inset.

Gibbs adsorption diverging at coexistence [11]. In the present case we have adsorbed films

of finite thickness and the thin-thick transition line meets the bulk coexistence curve at a

non-zero angle. We continue to refer to the point where the two lines meet as the ‘wetting

point’ because of the similarity to the case of a true first-order wetting transition. How-

ever, we must bear in mind that there are significant differences between the two cases.

Our present results are reminiscent of what is found in studies of the wetting transition

and pre-wetting for fluids adsorbed on spherical or cylindrical substrates [109, 110, 111].

In such studies the radius of curvature is usually very large and the authors inquire how

the wetting behaviour at a planar interface is affected by curvature. Here we find a sub-

stantial thin-thick transition line (see Fig. 7.3) for adsorption on a GCM particle which

has a radius only seven times that of the (larger) adsorbed species. We shall discuss these

analogies further in Sec. 7.6.
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Figure 7.7: The SM potential between two big GCM particles, with radius Rbb/R11 = 7.0,

in a binary solvent of small GCM particles of radius R11 and R22, where R22/R11 = 0.665

(Rb1/R11 = 5.0, Rb2/R11 = 4.97, ε∗b1 = 1.0, ε∗b2 = 0.8 and ε∗11 = ε∗22 = 2.0). These are

calculated from the density profiles in Fig. 7.4, at total bulk density ρ0R3
11 = 6.9 and

at concentration x = 0.99, 0.95, 0.94, 0.93, 0.925, 0.92, 0.91, 0.9, 0.89, 0.88, 0.879, and

0.8788, going from top to bottom (xcoex. = 0.87871). Note how the SM potential increases

in depth and range as the binodal is approached. In the inset we re-plot the SM potential

calculated at x = 0.8788 (solid line) along with our analytic approximation, Eq. (7.4.3)

(dashed line), with l/R11 = 9.6.

7.4.3 SM potentials for the binary mixture solvent

We now employ Eq. (7.2.10), with ν = 1, 2 and a = b, and the density profiles displayed

in Figs. 7.4 and 7.6, to calculate the SM potential between two big Gaussian particles

in a binary solvent of smaller Gaussian particles. The potentials are displayed in Figs.

7.7 and 7.8. For the results of Fig. 7.7 we follow path A in Fig. 7.3 which lies below the

thin-thick critical point, adding more of species 1 to the solvent. We find that as the

binodal is approached the SM potential, obtained by inserting the profiles of Fig. 7.4 into

Eq. (7.2.10), becomes longer ranged and deeper. For example, when x = ρ0
2/ρ0 = 0.8788

then Wbb(r = 2Rbb) ' −40kBT and Wbb(r = 0) ' −635kBT . Note that the underlying

(bare) repulsive big-big potential vbb(r) will be negligible (usually ε∗bb ∼ 2.0) in comparison
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Figure 7.8: As in Fig. 7.7 but now the SM potentials are calculated from the density

profiles in Fig. 7.6, at total bulk density ρ0R3
11 = 8.5 and at concentration x = 0.99, 0.97,

0.96, 0.959, 0.958, 0.957, 0.956, 0.955, 0.95, 0.948, 0.9473 and 0.9472, going from top to

bottom (xcoex. = 0.94716). The jump (marked J) in the SM potential between x = 0.957

and 0.956 is associated with the thin-thick film transition – see text. In the inset we

re-plot the SM potential calculated at x = 0.9472 (solid line) along with our analytic

approximation, Eq. (7.4.3) (dashed line), with l/R11 = 6.9.

with such strongly attractive SM potentials so that the effective pair potential veff
bb (r),

given by Eq. (7.2.12), is also strongly attractive for all separations r.

The results in Fig. 7.8 refer to path D in Fig. 7.3 and correspond to the density

profiles of Fig. 7.6. Since this path intersects the thin-thick transition line we expect to

find a jump in the SM potential, associated with the jump in film thickness. The jump is

indeed observed (marked J in Fig. 7.8); the depth of Wbb(r) changes discontinuously with

concentration x. Similar jumps occur for all paths which intersect the thin-thick transition

line. Note that for x close to xcoex, where thick films are present, the SM potentials in

Fig. 7.8 are very similar in shape to the corresponding results in Fig. 7.7.

It is important to understand why the presence of thick adsorbed films induces such

deep SM potentials. We can obtain some insight using the so-called sharp-kink (sk) ap-
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proximation [11] for the density profiles of the solvent, i.e.

ρν(r) =











ρcoex
ν r ≤ l

ρ0
ν r > l

(7.4.2)

where {ρcoex
ν } with ν = 1, 2, are the densities of the coexisting bulk fluid rich in species 1

and l is the thickness of the adsorbed film. On substituting Eq. (7.4.2) for ρν(r) into Eq.

(7.2.10) we find that

βW sk
bb (r) =

π

2

2
∑

ν=1

∆ρνε
∗
bνR

3
bν

[√
π [erf (r−) + erf (r+)] − Rbν

r
(e−r2

− − e−r2
+)

]

, (7.4.3)

where ∆ρν = (ρcoex
ν − ρ0

ν) is the difference in coexisting density for species ν, erf(x) =

(2/
√

π)
∫ x
0 dt exp(−t2) is the error function and r± = (l ± r)/Rbν . The energy scale

appearing in Eq. (7.4.3) is determined by

∆µex
b ≡ µex

b ({ρ0
ν}) − µex

b ({ρcoex
ν }), (7.4.4)

which, using the two component generalization of Eq. (7.3.27)

µex
b =

2
∑

ν=1

ρ0
ν v̂

0
bν =

2
∑

ν=1

ρ0
νπ

3/2εbνR
3
bν , (7.4.5)

yields

β∆µex
b = −

2
∑

ν=1

∆ρνπ
3/2ε∗bνR

3
bν > 0. (7.4.6)

This is our first estimate of the difference in the grand potential between inserting a

single big GCM particle in the bulk fluid near the phase boundary (bulk densities ρ0
ν)

and inserting the same particle in the bulk coexisting phase (the phase adsorbing on the

big particle, densities ρcoex
ν ). Provided the adsorbed film is thick enough, there will be a

region inside the film where we can insert the second big particle sufficiently far away from

both the fluid-fluid interface and from the central big particle at the origin, that the grand

potential for inserting the big particle is approximately that of inserting it into the bulk of

the coexisting phase. Eq. (7.4.4) gives the same value for the depth of the SM potential as

that obtained from Eq. (7.4.3) when l → ∞. For the point on the binodal at ρ0R3
11 = 6.9

(the intersection with path A, Fig. 7.3), with coexisting densities ρcoex
1 R3

11 = 2.79 and

ρcoex
2 R3

11 = 2.50, we find ∆µex
b = 592kBT , the large value arising mainly from the high

values of (Rbν/R11)
3 in Eq. (7.4.6). The well depth obtained from the full numerical
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calculation is 634kBT . The inset to Fig. 7.7 shows the comparison between the results of

the sharp kink approximation and the full calculation, taking a film thickness l/R11 = 9.6.

This value for l was chosen to give the best agreement between the analytic form, Eq.

(7.4.3), and the full numerical SM potential, i.e. l is treated as the fitting parameter. Eq.

(7.4.3) clearly captures the gross features of the SM potential calculated numerically for

x very close to xcoex. For states further from the bulk critical point, such as those where

the SM potentials in Fig. 7.8 are calculated and where the interfacial profiles are much

steeper, our sharp-kink approximation (7.4.3) fares even better – see the inset to Fig.

7.8 where we plot the SM potential calculated very close to coexistence along with our

analytic approximation, taking l/R11 = 6.9. The two results are almost indistinguishable

on the scale of the figure.

However, the approximate form for the SM potential, Eq. (7.4.3), does not have the

correct value for Wbb(r = 0), as we did not include the effect that the big GCM particle has

on the small particle densities near the origin; this alters the densities from their coexisting

values {ρcoex
ν }. The sharp kink approximation also fails to capture the correct asymptotic

decay of the SM potential since it does not input the correct asymptotic decay of the

density profiles ρν(r) far from the fixed big particle. The profiles of both species, ν = 1, 2,

should decay monotonically into bulk with a common decay length equal to the bulk

correlation length, ξ, of the bulk binary mixture – see Ch. 5.4 and Ref. [52]. The sharp-

kink approximation does not contain this information, and W sk
bb (r), Eq. (7.4.3), decays

faster than the true Wbb(r) as r → ∞. (We shall comment further on the asymptotic

decay of Wbb(r) in Sec. 7.5). The main virtue of Eq. (7.4.3) is that it gives the correct

scaling for the depth of the SM potential: Wbb(r = 0) ∼ −∆µex
b , when there is a thick

adsorbed film. The quantity ∆µex
b , defined by Eq. (7.4.4), should also set the energy scale

for Wbb(r = 0) in other types of fluids that are close to bulk coexistence. However, the

particular form of µex
b will depend on the particular fluid under consideration – we will

return to this in the next subsection.

7.4.4 The excess chemical potential of the big particle immersed in the

binary mixture

Solvation of a single big particle in the binary solvent should reflect the proximity of the

thermodynamic state to the bulk coexistence curve. In this subsection we extend the

analysis of Sec. 7.3.4 to the binary solvent. Eq. (7.4.5), the two component generalisation
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Figure 7.9: µex
b , the excess chemical potential of a big GCM particle, radius Rbb/R11 = 7.0,

in a binary solvent of small GCM particles of radius R11 and R22, where R22/R11 = 0.665

(Rb1/R11 = 5.0, Rb2/R11 = 4.97, ε∗b1 = 1.0, ε∗b2 = 0.8 and ε∗11 = ε∗22 = 2.0) calculated along

a path of constant total bulk density ρ0R3
11 = 6.9 (path A in Fig. 7.3) at concentrations

x between xcoex. = 0.87871 and x = 1.0. The straight (dashed) line denotes the results of

the simplest approximation, Eq. (7.4.5), and the lower (solid) line those obtained by the

second route, Eq. (7.3.30), which inputs the density profiles of Fig. 7.4. The open circle

at x = xcoex shows the value of µex
b from the approximation Eq. (7.4.7).

of Eq. (7.3.27), is the simplest estimate for the excess chemical potential, µex
b , of the big

GCM particle in a binary mixture of smaller particles. As demonstrated by Eq. (7.3.37)

for the one-component solvent, this result is only the leading order approximation to

µex
b . Away from the phase boundary, the corrections to Eq. (7.4.5) turn out to be very

small. Along any path of constant total bulk density ρ0R3
11 Eq. (7.4.5) is a linear function

of x (x = ρ0
2/ρ0) – see Fig. 7.9 for the case of path A in Fig. 7.3. This route to µex

b

does not include information about thick adsorbed films around the big particle. We can

incorporate this information by adopting the second route that we introduced in Sec. 7.3.4,

i.e. we now input into the grand potential density ω(r) in Eq. (7.3.30) density profiles which

incorporate a thick adsorbed film (see Fig. 7.4). µex
b calculated this way should include a

surface tension contribution, associated with the (spherical) fluid-fluid interface, for those
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state points where a thick film is present. The results from this second route, are also

plotted in Fig. 7.9. We see that for states with x & 0.93, where there is no thick film,

both Eq. (7.4.5) and the numerical results from Eq. (7.3.30), give a similar value for µex
b

(the small difference is well-accounted for by the second term in Eq. (7.3.37) in the case

of the pure fluid, x = 1.0). However, at smaller x, as the thick film develops, the results

for µex
b versus x from the two different routes diverge – see Fig. 7.9. The results from

Eq. (7.3.30), which includes the effects of a film, show µex
b decreasing as x decreases and

the film thickens. This seems surprising at first sight since one expects the addition of a

(positive) fluid-fluid surface tension contribution to increase the excess grand potential.

However, this term is more than offset by the fact that the big particle at the origin is

now surrounded by a thick film of the coexisting phase rich in species 1, in which it has

a lower excess grand potential. To some extent the two competing contributions cancel

each other out, so that Eq. (7.4.5) remains a reasonable first approximation for µex
b (note

the vertical scale in Fig. 7.9), even near xcoex when there are thick films present.

Can we find a better approximation for µex
b for the case when there is a thick adsorbed

film around the big GCM particle? In the spirit of Eq. (7.3.43), we might suppose that

µex
b '

2
∑

ν=1

ρcoex
ν v̂0

bν + 4πl2γ(l). (7.4.7)

The first term is the excess chemical potential, from Eq. (7.4.5), of inserting the big GCM

particle into the coexisting bulk phase – i.e. the phase constituting the adsorbed film; Eq.

(7.4.5) should be accurate for this quantity. The second term is the free energy associated

with the fluid-fluid interface which is located near r = l, the film thickness. γ(l) is the

fluid-fluid surface tension, which we approximate by γ(∞), the planar tension, defined

at bulk coexistence and calculated in Ch. 5. As an example, consider the point on the

binodal at total density ρ0R3
11 = 6.9. We find, using l/R11 = 9.6, that Eq. (7.4.7) gives a

value βµex
b = 3483. This result is plotted in Fig. 7.9 as the open circle. It agrees very well

with the numerical result for x = xcoex.

We can also use Eq. (7.4.7) to shed some light on why there is a ‘wetting point’. In

the case where there is no thick adsorbed film at bulk coexistence Eq. (7.4.5) provides a

good estimate for µex
b , the excess grand potential for inserting the big particle into the

binary solvent. However, when thick adsorbed films are present Eq. (7.4.7) is a more

reliable approximation. At high values of ρ0R3
11, Eq. (7.4.5) yields a lower excess chemical

potential than Eq. (7.4.7). The situation is reversed as ρ0R3
11 is decreased towards the
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critical point value along the binodal and the ‘wetting point’ occurs when the two different

expressions for µex
b , corresponding to with and without the thick film, are equal. This

argument implies that the thick film forms for states near the bulk critical point because

the free energy of inserting the big GCM particle into the coexisting phase plus the free

energy penalty of forming the interface between the two fluid phases is lower than inserting

the particle into the bulk phase, with no thick adsorbed film. Far from the critical point,

where the fluid-fluid surface tension is much greater, there is no longer a free energy gain

from forming the thick film. In order to implement Eq. (7.4.7) one must insert a value

for the film thickness l at bulk coexistence. Consequently the estimate of the ‘wetting

point’ is necessarily crude. The actual ‘wetting point’ occurs when the numerical results

for the excess grand potentials of the two configurations (with and without thick adsorbed

films), calculated along the binodal, are equal. Note that for a path such as D in Fig. 7.3

that intersects the thin-thick transition line the derivative with respect to concentration

of the excess grand potential and, hence, of µex
b is discontinuous at the transition within

the present mean-field treatment.

7.4.5 The SM potential in the vicinity of the binary mixture critical

point

When a pair of big GCM particles is immersed in a binary mixture of small GCM par-

ticles which is at a state point near the bulk critical point, a long ranged SM potential

should arise between the big particles, due to the long ranged (critical) correlations in the

host fluid. This is a very different phenomenon from that we encountered earlier where,

approaching the binodal, the development of thick adsorbed films gives rise to strongly

attractive and long-ranged SM potentials. Near the critical point, the asymptotic decay of

the bulk pairwise correlation functions hνµ(r) is monotonic, with a common decay length

ξ, the bulk correlation length of the mixture – see Ch. 5.4. ξ diverges on approaching

the critical point. Whilst the present approach is mean field-like and therefore does not

capture correctly the behaviour of the fluid in the region of the critical point, i.e. quantities

such as ξ diverge with the (incorrect) mean field exponent, we still expect the theory to

describe qualitatively the behaviour of the SM potential in a near critical solvent.

We employ the same strategy as in earlier sections, i.e. we calculate the small particle

density profiles around the big GCM particle and insert these into Eq. (7.2.10), with a = b.

Each profile consists of a Gaussian-like perturbation at the origin plus an exponentially
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decaying tail so that:

ρν(r) ∼ ρ0
ν − Aν

r
exp(−r/ξ), r → ∞ (7.4.8)

for ν = 1, 2 Aν is the species dependent amplitude and ξ is the common bulk correlation

length. Fig. 7.10 a) displays the density profiles of small particle species 1 and species 2 (the

pair potential parameters are those used in the calculations of the previous subsection),

around a single big particle with radius Rbb/R11 = 7.0, calculated along a path of constant

density, ρ0 = ρ0
crit, the critical point density, with concentration decreasing from x = 1.0

to x slightly larger than xcrit. In Fig. 7.10 b) we show that the decay of the density profiles

is indeed of the form given in Eq. (7.4.8). By plotting ln([ρ0
2 − ρ2(r)]rR

2
11) versus r, the

exponentially decaying tail is manifest as a straight line, and the magnitude of the gradient

= 1/ξ, where ξ is the bulk correlation length. This figure should be compared with the

inset to Fig. 7.1 where there is no straight line portion and only the effective Gaussian

decay can be ascertained. Note that the bulk correlation length ξ can also be calculated

from the poles of ĥνµ(q), see Ch. 5.4, which corresponds to calculating the zeros of D(q)

in Eq. (7.3.19) but with s, b replaced by ν, µ – the indices now representing the two small

species. Near the critical point the lowest lying pole is pure imaginary and α−1
0 = ξ. This

route gives results which agree with those obtained from the gradients.

Near the critical point we find that the depth of the SM potential between two large

GCM particles immersed in a binary solvent of smaller ones is roughly constant, but the

range diverges as the bulk correlation length ξ in the solvent diverges. The SM potentials

calculated from the density profiles of Fig. 7.10 are plotted in Fig. 7.11. We see that in

the vicinity of the critical point the depth of the SM potential is approximately constant,

Wbb(r = 0) ' −300kBT , but the range is strongly dependent on the value of the bulk

correlation length ξ. Note the length scale in Fig. 7.11; the longest ranged SM potentials

are still substantial for r > 30R11. At this range the (reduced) direct potential between

the big particles is ∼ exp(−(30/7)2) ' 10−8.

At this stage it is instructive to recall that the effective potential between two big

particles is

veff
bb (r) ≡ vbb(r) + Wbb(r) = −kBT ln gbb(r) (7.4.9)

where the radial distribution function gbb(r) ≡ 1 + hbb(r) is evaluated at infinite dilution,

µb → −∞. Thus βWbb(r) decays in the same fashion as −hbb(r), r → ∞. For fluids

in which the interparticle potentials are short ranged, we expect all the pair correlation
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Figure 7.10: a) shows the density profiles of a binary mixture of small GCM particles

with R22/R11 = 0.665, around a big GCM test particle with Rbb/R11 = 7.0, calculated

along path B in Fig. 7.3 at constant total bulk density ρ0R3
11 = ρcritR

3
11 = 5.6, the critical

point density, and concentration x = ρ0
2/ρ0 = 0.95, 0.9, 0.85, 0.8, 0.77, 0.75, 0.73 and 0.72

(xcrit = 0.71). The upper profiles are those of species 2. The very top one is the profile at

x = 0.95 and the one below is at x = 0.9 etc. The lower profiles are those of species 1. The

very bottom one is the profile at x = 0.95 and the one above is at x = 0.9 etc. Note the

slow decay for states approaching the critical point. In b) ln([ρ0
2 − ρ2(r)]rR

2
11) is plotted

versus r/R11. The gradient of the straight line portion yields the inverse correlation length

ξ−1 – see Eq. (7.4.8).
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Figure 7.11: The SM potential, obtained from the density profiles displayed in Fig. 7.10,

calculated at ρ0R3
11 = ρcritR

3
11 = 5.6 and concentration x = 0.95, 0.9, 0.85, 0.8, 0.77,

0.75, 0.73 and 0.72 (xcrit = 0.71). Near the critical point the potentials have roughly the

same depth but the range increases as the critical point is approached. The inset plots

ln(−βrWbb(r)) versus r/R11; this should be compared with Fig. 7.10 b).

functions hij(r) in the mixture to decay with the same asymptotic form – see Ch. 5.4 and

Ref. [52]. It follows that near the critical point, inside the monotonic regime in Fig. 7.3,

Wbb(r) should decay in the same fashion as the density profiles ρν(r) in Eq. (7.4.8), i.e.

with the same exponential decay length ξ. (The amplitude will, of course, be different).

This expectation is borne out by plotting ln(−βrWbb(r)) versus r. In the vicinity of the

critical point we find straight line portions with gradient −1/ξ.

Note that for the state point nearest to the critical point in Figs. 7.10 and 7.11, namely

x = 0.72, ξ/R11 ' 7.1, i.e. we are not particularly close to bulk criticality and that is why

we still observe exponential decay of the density profiles and of Wbb(r). Were we to perform

calculations much closer to the critical point, so that ξ is very much larger that Rbb, we

should observe interesting cross over to power law decay. This takes us into the regime

investigated in studies of the effect of curvature on the critical Casimir effect – see Ref. [81]

and references therein. We have not attempted to investigate this regime in our present

study.
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7.5 Test particle versus OZ route to the SM potential

As we recalled in the last section (see Eq. (7.4.9)), one way to determine the SM potential

is to calculate gbb(r), the radial distribution function of the big particles in the limit

µb → −∞. It is important to recognize that this procedure is formally equivalent to that

described in Sec. 7.2.1. In order to understand this we use Eqs. (7.2.2) and (7.2.5) to

obtain the expression

βWbb(r) = − lim
µb→−∞

ln

(

ρb(r)

ρb(∞)

)

+ β(Vb(∞) − Vb(r)), (7.5.1)

where ρb(r) is the density profile of the big particles (b) around another big particle fixed

at the origin exerting the potential Vb(r) = vbb(r) on species b and ρb(∞) ≡ ρ0
b is the bulk

density. Since ρb(r)/ρ0
b = gbb(r) (this is the Percus test particle identity), Eq. (7.4.9) then

follows directly. Thus, in an exact treatment it would not matter whether one calculates

gbb(r) and uses (7.4.9) or whether one follows the procedure of Sec. 7.2.1, evaluating c
(1)
b (r)

etc; they must give the same result.

What is the situation within an approximate DFT, such as the one we use here? The

procedure we followed in the calculations of the earlier sections, i.e. calculating c
(1)
b (r; µb →

−∞), should correspond to the test particle route to gbb(r), in the limit µb → −∞. We

confirmed this assertion by calculating gbb(r) via the test particle route, minimizing the

3-component functional (Eq. (7.2.6) with i, j = 1, 2 and b) for the ternary mixture of GCM

particles. The density profiles of the three components around the fixed big particle were

calculated for smaller and smaller values of ρ0
b (corresponding to the limit µb → −∞),

until gbb(r) remained unchanged, then this limiting value was used in Eq. (7.4.9) to obtain

Wbb(r). As expected, this test particle route gave exactly the same SM potential as that

obtained in the preceding sections where we had to calculate only the small particle density

profiles around the big particle, rather than those of the full ternary mixture. That we

reproduce exactly the SM potentials in Fig. 7.7 attests to the accuracy of the numerics;

see also the discussion of depletion potentials in Ref. [3].

There is, of course, an alternative route to the calculation of gbb(r), namely via c
(2)
ij (r)

and the OZ equations for the bulk mixture, i.e. the generalization of Eqs. (7.3.18) and

(7.3.19) to the ternary case. Since the pair direct correlation functions, obtained from

second derivatives of F [{ρi}], correspond to the RPA, Eq. (7.2.13), it is very easy to

obtain all the partial radial distribution functions gij(r) via this route. We investigated the

standard mixture, with R22/R11 = 0.665, Rbb/R11 = 7.0, ε∗b1 = 1.0, ε∗b2 = 0.8, ε∗12 = 1.888
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and ε∗11 = ε∗22 = ε∗bb = 2.0, along the same path A in Fig. 7.3 as for the results of Figs. 7.4

and 7.7. The functions gb1(r) and gb2(r), calculated in the limit ρ0
b → 0, do not exhibit

the feature of a thick adsorbed film which is apparent in the density profiles ρ1(r) and

ρ2(r) in Fig. 7.4 for states close to bulk coexistence. When we calculate gbb(r) in the same

limit and insert this into Eq. (7.4.9) for Wbb(r) we obtain results, see Fig. 7.12, that are

totally different from those obtained in our earlier calculations, i.e. from the test particle

route (Fig. 7.7). The present results yield SM potentials that are almost two orders of

magnitude weaker, for states near bulk coexistence, than the earlier results. Clearly the

difference is due to the omission of the effects of thick adsorbed films. Significantly, even

far from bulk coexistence, at concentration x = 0.99, the test particle route (Fig. 7.7)

yields a value for Wbb(r = 0) that is a factor of 9 times that from the OZ route. Thus, it

is evident that for large asymmetries in the sizes of the particles the two different routes

to Wbb(r) are vastly different. Only within an exact treatment could we expect the two

routes to yield the same results. We speculate that the test particle results of Fig. 7.7

will be much more reliable than those from OZ. The former route fixes the big particle

and then determines an (accurate) response of the small species to the external potential;

this is not a particularly demanding requirement for a DFT. By contrast, the OZ route

makes no distinction between big and small; it attempts to treat all types of correlations

equally accurately and this is a tall order! Note that the OZ route predicts the same type

of asymptotic decay (r → ∞) for gbb(r) as does the test particle route. In both cases the

decay is determined by the zero of the denominator in the Fourier transform of the OZ

equations, i.e. by the requirement that

[1 − ρ0
1ĉ11(q)][1 − ρ0

2ĉ22(q)] − ρ0
1ρ

0
2ĉ

2
12(q) = 0, (7.5.2)

which is analogous to the treatment in Sec. 7.3.2 (see also Ref. [3]). The ultimate decay

may be monotonic or exponentially damped oscillatory, depending on the location of the

state point relative to the Fisher-Widom line – see Fig. 7.3. However, the amplitude (and

any phase factor) will not be the same when calculated by the two different routes. The

test particle route predicts a much larger amplitude for the decay of gbb(r)−1 and, hence,

of Wbb(r).

We conclude this subsection by returning to the issue raised in Sec. 7.3.3 of the sym-

metry, under interchange of species i, j, of the SM potential Wij(r). In general, we find

that for two different sized big GCM particles, a and b, immersed in a binary solvent of
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Figure 7.12: SM potentials calculated using Eq. (7.4.9) with gbb(r) obtained from the RPA

closure to the OZ equations. These results should be compared with those calculated

via the test particle route in Fig. 7.7. They are calculated for the same pair potential

parameters and at the same points in the phase diagram. From top to bottom they refer

to x = 0.99, 0.95, 0.94, 0.93, 0.925, 0.92, 0.91, 0.9, 0.89, 0.88, 0.879 and 0.8788 (note that

the last three curves lie almost on top of one another). These potentials are markedly less

attractive (note the vertical scale) from those of Fig. 7.7.

smaller particles Wab(r) 6= Wba(r) when the calculations are performed using the test par-

ticle route, whereas the OZ route (for the 4 component mixture) automatically respects

the symmetry, since gab(r) = gba(r) is a direct consequence of the OZ equations. However,

as we have argued above, there are good reasons to suppose that the test particle route

should be more reliable so we examine some of its consequences.

We focus on the radial distribution functions gij(r) in a ternary mixture with i, j =

1, 2, 3, where ρ0
3, the number density of the biggest species, is chosen to be small. We

find that for state points far from the fluid-fluid phase boundary gij(r) ' gji(r), i.e. for a

given set of bulk densities one can fix species i at the origin, and calculate ρj(r) around it

giving gij(r) = ρj(r)/ρ0
j , or one can fix a particle of species j at the origin and calculate

ρi(r) around this particle giving gji(r) = ρi(r)/ρ0
i , which will be almost the same as gij(r).

Some examples of pair correlation functions are plotted in Fig. 7.13, for a ternary mixture
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of particles with R22/R11 = 0.665 and R33/R11 = 1.5. The energy parameters are ε∗ii = 2

(i = 1, 2, 3), ε∗12 = ε∗13 = 1.888 and ε∗23 = 1.6 and the bulk densities are ρ0
1R

3
11 = 0.07,

ρ0
2R

3
11 = 6.93 and ρ0

3R
3
11 = 0.01, which corresponds to adding a small concentration of

species 3 to a binary mixture of 1 and 2 with total density (ρ0
1+ρ0

2)R
3
11 = 7.0 and x = 0.99.

As can be seen from Fig. 7.13, it makes almost no difference which particle is fixed at the

origin, the curves gij(r) and gji(r) (i 6= j) lie extremely close to one another. We find a

similar degree of consistency for states well away from the phase boundaries in the more

asymmetric ternary mixture that we investigated in the previous sections. However, near

the phase boundary the symmetry is broken severely. The reason is as follows: if one fixes

a big particle (b) at the origin and calculates the density profiles around it then near the

phase boundary there will be an adsorbed film of the smaller particles – see for example

the plots in Fig. 7.4. In this case gbν(r) = ρν(r)/ρ0
ν will incorporate the film. On the other

hand, if one fixes one of the small particles, species ν, at the origin and calculates the

density profile of the fluid around it, there will not be a thick adsorbed film on this small

particle since the curvature is too great. Thus, gνb(r) = ρb(r)/ρ0
b will not be the same as

gbν(r). To summarize: within the present mean-field DFT, the test particle route to the

radial distribution functions usually respects the symmetry gij(r) = gji(r) to a high level

of accuracy, even when there are large size asymmetries between the particles. However,

close to the binodal and when there are big particles present, so that thick adsorbed films

can develop, the symmetry requirement breaks down. In these circumstances one supposes

that it is preferable to treat the largest of the particle species as the external potential, in

order to best include the effects of the adsorbed film.

7.6 Concluding remarks

In this chapter we have calculated the SM potential between a pair of big GCM particles

immersed in a binary solvent of small GCM particles, using a general DFT method [3].

Within our simple mean-field treatment, we are able to include some of the effects of

thick adsorbed films of the solvent fluid around the big solute particles, as well as effects

associated with a thin-thick transition in these adsorbed films. Thick films result in

long ranged SM potentials, the range being determined by the adsorbed film thickness.

Furthermore, the DFT method was able to incorporate, albeit within mean-field, the long

ranged decay of the solvent density profiles around the big solute particle which occurs
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Figure 7.13: The pair correlation functions calculated by the test particle route for a

ternary mixture of GCM particles. The sizes are R22/R11 = 0.665 and R33/R11 = 1.5

and the energy parameters are ε∗ii = 2 (i = 1, 2, 3), ε∗12 = ε∗13 = 1.888 and ε∗23 = 1.6. The

bulk densities are ρ0
1R

3
11 = 0.07, ρ0

2R
3
11 = 6.93 and ρ0

3R
3
11 = 0.01. From top to bottom

the curves corresponds to g33(r), g13(r) (g31(r)), g11(r), g23(r) (g32(r)), g12(r) (g21(r))

and g22(r). One observes that g13(r) is almost identical to g31(r), g23(r) to g32(r) and

g12(r) to g21(r) for this state point. Note the strong 3-3 clustering even at these small size

asymmetries.

when the solvent is in a state near the bulk critical point. This effect also results in long

ranged SM potentials. Since the RPA Helmholtz free energy functional that we use, Eq.

(7.2.6), is probably the most simple one can devise, we expect that using the same general

DFT approach but with more sophisticated functionals for the present system and for

other model fluids that exhibit fluid-fluid phase separation should also be able to describe

similar effects.

Given that our approach does incorporate thick adsorbed films around the solute par-

ticles, an important question is: have we incorporated all aspects of the films into the

SM potentials? Since we do not have any simulations with which to compare directly,

we can only conjecture as to what is omitted. A feature of several studies of hard core
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particles surrounded by thick adsorbed films is a bridging ‘transition’ occurring when the

big particles are sufficiently close that the two adsorbed films join [92, 94, 95, 96, 97, 98].

We see no signature of this phenomenon, which is closely related to capillary condensa-

tion. There are three possible reasons for this. The first is that in the present soft core

system there is no bridging transition, and that bridging is associated only with solute

particles that have a hard core. The second possibility is that a bridging transition occurs

only for big particles which are very much larger than we consider here. The third, and

most likely explanation for not observing bridging transitions in the present model, is that

we are are using a very crude mean field Helmholtz free energy functional, Eq. (7.2.6).

This simple RPA functional, used in the context of the present theory, probably does not

incorporate these effects. We can obtain further insight by examining the (formally exact)

inhomogeneous Kirkwood-Hill equation for the one-body direct correlation function of a

(big) particle b immersed in solvent of (small) particles, labeled ν [100]:

−β−1c
(1)
b (r) =

∑

ν

∫ 1

0
dλ

∫

dr′ρν(r
′)gbν(r, r

′; λ)vbν(|r − r′|), (7.6.1)

where, as in Eq. (7.3.29), λ is a parameter which ‘turns on’ the big-small external po-

tential vbν(r) and gbν(r, r
′; λ) is the big-small (inhomogeneous) pair distribution function

corresponding to the potential λvbν(r), with 0 ≤ λ ≤ 1. By making the approximation

gbν(r, r
′; λ) ≡ 1 in Eq. (7.6.1), we recover Eq. (7.2.9), obtained earlier by taking one func-

tional derivative of our mean-field Helmholtz free energy functional, Eq. (7.2.6), and the

limit ρ0
b → 0. Combining Eqs. (7.6.1), (7.3.29) and (7.2.5), we arrive at a formally exact

result for the SM potential:

βWab(r) =
∑

ν

∫ 1

0
dλ

∫

dr′[ρν(r
′)gbν(r, r

′; λ) − ρ0
νgbν(|r − r′|; λ)] βvbν(|r − r′|). (7.6.2)

Setting gbν(r, r
′; λ) ≡ 1 in Eq. (7.6.2) provides an alternative way to derive Eq. (7.2.10),

our mean-field approximation for the SM potential. Clearly we omit two-body correlations

in the fluid, and it is these which would give rise to any bridging transition. However,

to ascertain fully what correlation effects are omitted by our approach, it is necessary to

compare our results with simulation studies.

Another, related, aspect of correlation effects concerns our observation in Sec. 7.5

that the radial distribution functions gbν(r) calculated by the test particle route do not

maintain the symmetry gbν(r) = gνb(r). This is particularly clear near phase separation

when there are thick adsorbed films of the small particles around the big particles: if
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one calculates gbν(r) by fixing the big particle, then one finds the signature of a thick

adsorbed film, since gbν(r) = ρν(r)/ρ0
ν and ρν(r), the density profile of the small particles

around the big particle, describes the thick adsorbed film. If, instead, one fixes a small

particle and calculates gνb(r) = ρb(r)/ρ0
b , there is no signature, within the present mean-

field treatment, of the thick adsorbed film around the big particles and gbν(r) 6= gνb(r).

It would be instructive to examine this issue of symmetry, within the test particle route,

for other approximate DFT’s since we believe that a theory which maintains gbν(r) =

gνb(r) symmetry and includes correlation effects in the presence of thick adsorbed films

would be very difficult to construct. Within any approximate DFT approach, fixing the

biggest particle as the external potential and then calculating the response of the remaining

particles to this external potential should be the most reliable way of including the effects

of thick adsorbed films. One can then take these density profiles and insert the second

(smaller) particle in order to calculate the SM potential between these two particles. In this

way we ensure some effects due to thick adsorbed films are incorporated into the calculation

and these lead to predictions of very strongly attractive and long-ranged SM potentials.

Very different behaviour (much less attractive potentials) is manifest in the alternative

OZ route to the radial distribution functions. Comparing the results of Figs. 7.7 and 7.12

shows that the RPA closure to the OZ equations yields much weaker SM potentials than

those from the test particle route. More generally, we expect the OZ route, which does

have the advantage of enforcing the gij(r) = gji(r) symmetry, to be less reliable than

test particle when employed within the context of approximate DFT’s. Whether integral

equation closure approximations, of the type discussed in Ref. [99], will fare any better for

states close to phase separation remains to be examined in detail. However, incorporating

effects of thick adsorbed films into a closure approximation is non-trivial. Once again it

would be advantageous to have simulation results so that careful comparisons could be

made.

The mean-field nature of our Helmholtz free energy functional introduces other limi-

tations to the present approach. First, our calculation of the SM potential in the vicinity

of the solvent critical point does not capture the effects of true (bulk) criticality. In our

treatment, the bulk correlation length ξ, which determines the range of the SM potential

in this region of the phase diagram, diverges with the mean field exponent ν = 1/2, rather

than the true (Ising) exponent ν = 0.63. However, we believe that our present approach

captures correctly the qualitative behaviour of the SM potential that one would find in
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the vicinity of the critical point. As emphasized in Sec. 7.4.5, we have deliberately avoided

the regime where ξ is of the same size or larger than the biggest radius in the system.

The field theoretic approaches described in Refs. [77, 78, 79, 80, 81] are better suited to

such investigations. The advantage of the present (microscopic) approach is that it pro-

vides a qualitative description of the SM potential in different regions of the solvent phase

diagram; it is not restricted to particular state points nor to situations where the solute

particles are very much bigger than the solvent particles.

Second we must inquire about the limitations in our treatment of the thin-thick tran-

sition. As remarked in Sec. 7.4.2, the sharp transition that we find should be rounded by

finite-size effects in a treatment going beyond mean-field. Since there is only a finite num-

ber of particles adsorbed around the (big) solute particle fluctuation effects will round the

transition. Although the thin-thick transition in the adsorbed film that we find is related

to the pre-wetting transition that one can find for fluids adsorbed on the surface of a hard-

core spherical substrate [109, 110, 111], there are important differences due to the soft core

nature of the GCM. In particular, a significant portion of the adsorbed film lies inside the

big particle. The origin of the adsorbed film is due to the fact that the big particle favours

the larger of the two small species (species 1) and this is caused by the interplay between

the length scales associated with the sizes of the different particles, and the non-additive

mixing rule, Eq. (7.3.8), which governs the interaction between un-like species. Moreover,

for some states near the phase boundary there is a free energy gain if the big GCM particle

is surrounded by the coexisting phase rich in species 1, which can more than outweigh

the free energy penalty of forming the interface between the two fluid phases. It is this

balance which determines the final configuration of the fluid surrounding the big particle:

either a thin or a thick adsorbed film. The transition occurs when the penalty for forming

the spherical fluid-fluid interface is equal to the free energy gain for the big particle to

be surrounded by the coexisting phase. Of course, these general considerations apply to

other fluid systems, including hard-core fluids, however the significant difference between

the soft GCM and hard-core big particles immersed in a wetting solvent appears to be

the size ratio between the solute particles and the solvent particles which is required to

obtain thick films. For the present GCM we observe rather thick films for a size ratio

Rbb/Rss ' 10, whereas for hard core systems a size ratio of at least 100, and often much

larger, is required. For example, we calculated the density profiles of the binary solvent

of small GCM particles considered in the phase diagram of Fig. 7.3 subject to a spherical



138 Solvent Mediated Interactions Close to Fluid-Fluid Phase Separation

potential of the form:

βVν(r) =











∞ r ≤ Rb

Aν exp(−r/R11)/(r/R11) r > Rb

(7.6.3)

with amplitude A1 = 1 and A2 = R22/R11 = 0.665. In the planar limit (Rb → ∞) this

wall potential exhibits a first order wetting transition with the associated pre-wetting line

– see Ch. 6. However, when Rb/R11 = 30 the typical adsorbed film thickness at bulk

coexistence is ' 5R11 and the pre-wetting line is about one third the length of that in the

planar limit – see Appendix D. Strikingly, it is 13 times shorter than the length of the

thin-thick transition line found in the present study (Fig. 7.3) for a big GCM particle with

Rbb/R11 = 7.0. Thus, there are pronounced differences between the mechanism generating

the thin-thick transition around a soft core particle and that for the pre-wetting transition

occurring in adsorbed films on the surface of a hard spherical substrate. Nevertheless,

the thickness of the adsorbed film around the soft GCM particle must be limited, in the

usual way, by curvature. For a spherical substrate, the usual approach [11, 109, 110] is to

perturb about the planar limit noting that the curvature of the substrate acts (exactly)

as a bulk field, i.e. a displacement from coexistence. This idea should also be valid for the

present GCM. However, it is not clear how best to construct the planar limit, given the

need to impose the mixing rules, for this soft core system. Therefore we have not carried

out a systematic investigation of how the thin-thick transition line depends on the radius

Rbb of the big solute particles. What we can say is that increasing Rbb shifts the ‘wetting

point’ to higher values of the total density ρ0 and lengthens the thin-thick transition line.

Such behaviour is in keeping with that found for pre-wetting on spherical substrates where

decreasing the radius shifts the wetting transition closer to the bulk critical point [109].

It follows that the nature of the rounding of our thin-thick transition should be similar

to that discussed for prewetting on spheres [109, 110]. There finite-size fluctuation effects

lead to a broadening over a temperature interval δT around the prewetting line which is

proportional to R−2
b and we would expect a similar dependence for the present case. In

Ref. [109] estimates are made for the case where Rb = 100 solvent atomic diameters and

the rounding |δT |/T ∼ 10−4. For our much smaller particle radii we must expect much

more pronounced broadening. However, we have not attempted a detailed calculation for

the present system where the interparticle forces are short ranged rather than power-law,

as in Ref. [109].



7.6 Concluding remarks 139

What are the consequences for experiment of our predictions of long-ranged attractive

SM potentials resulting from thick adsorbed films? Our predictions should not be specific

to the present GCM system but should hold for any solvent exhibiting fluid-fluid phase

separation. There are implications for atomic force microscope (AFM) measurements since

when the microscope tip is immersed in a fluid that is close to phase separation both the

tip and the substrate may be covered in a thick film of the adsorbed phase, resulting in

much longer ranged forces than the intrinsic (bare) forces arising between the tip and the

surface or those which are exerted when the solvent is far from phase separation. This is

indeed what has been found in a Monte Carlo study of the force between a large sphere

(modeling the AFM tip) and a planar wall [112]. Our DFT approach is well-suited to

this situation since one can easily input the density profile(s) of the solvent, ρs(z), at the

planar wall, which will exhibit a thick adsorbed film, and then insert the spherical test

particle. Indeed this procedure should be rather accurate, and capture all of the physics,

when the size of the test particle is such that the adsorbed film on the particle is not very

thick.

Alternatively, were one to perform a direct measurement of the force between two

large colloidal particles in a binary solvent near to fluid-fluid phase separation, using

optical tweezers [113], one should find a long ranged force due to the presence of thick

adsorbed films surrounding the big colloid particles. Light scattering measurements, see

e.g. Ref. [114], of the second virial coefficient B2 for big colloidal particles suspended in a

near phase-separating solvent could also be most revealing. Long ranged attraction should

give rise to very large negative values of

B2 = 2π

∫ ∞

0
dr r2(1 − exp[−βveff

bb (r)]). (7.6.4)

Moreover there should be very pronounced variation of B2 as the solvent binodal is ap-

proached and any thin-thick or bridging transition should lead to a jump in this coefficient.

We are not aware of systematic studies of B2 in an appropriate solvent although there are

experiments [115] on B2 for a globular protein in a solution of non-adsorbing polymer

which show that B2 depends on the proximity of the polymer solution to its spinodal line.

However, this study corresponds to the ‘protein limit’ since the radius of gyration of the

polymer is larger than the radius of the protein for which other physical considerations

are relevant. Of course any measurements of B2 require the concentration of the big par-

ticles to be small but non-zero and strongly attractive SM forces promote clustering of the
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colloidal particles causing the big particles to be very weakly soluble.

We can estimate the solubility of big GCM particles in the fluid of smaller GCM

particles by calculating the spinodal for the binary mixture of these big and small species.

This is obtained analytically (see Eq. (5.2.11)), from the mixture free energy, Eq. (7.3.28).

For the binary fluid considered in Sec. 7.3 with Rbb/R11 = 7.0, Rss/R11 = 0.665, ε∗bb =

ε∗ss = 2.0, ε∗bs = 0.8 and density of the small GCM particles ρ0
sR

3
11 = 7.0, then the density at

the spinodal of the big particles is ρ0
bR

3
11 = 1.2×10−5, i.e. they phase separate when there

is about one big GCM particle per 106 of the small particles. This should be compared with

the binodal calculated for the binary mixture of species 1 and 2 with R22/R11 = 0.665 given

in Fig. 7.3. Such considerations are important when seeking to determine the mechanism

for the flocculation of the big colloidal particles observed [82, 83, 84, 85, 86, 87, 88, 89] in

a binary solvent; one cannot necessarily assume that the non-zero concentration of colloid

particles does not change the solvent phase diagram, i.e. the flocculation may be linked to

phase separation in the ternary mixture [116, 117, 82, 118]. In the experiments of Beysens

and co-workers [82, 83, 84, 85, 86] and of Maher and co-workers [87, 88, 89] it is possible

that two factors play a role: a) the presence of thick adsorbed films could lead to strongly

attractive SM forces between big particles which result in pronounced clustering and b)

the concentration of the big particles could be sufficient to alter the solvent phase diagram.

However, developing a theory which treats the relevant ternary mixture accurately is not

straightforward.

A well trodden path in colloidal systems is to tackle the problem by calculating the

SM potential between two big colloidal particles in the sea of small ones and use this to

model the colloids as an effective one-component system, from which one could obtain the

phase diagram by theory or simulation [22]. Such an approach proved very powerful for

asymmetric binary hard sphere mixtures [23] and for certain models of colloid-polymer

mixtures [22]. It is tempting to follow the same path for the present GCM system but

one finds quickly that there are significant differences. As we have seen, the SM potential

between two big particles, Wbb(r), is attractive for all separations r. Depending on ε∗bb,

the strength of the repulsive bare big-big potential vbb(r), this implies that the effective

pair potential veff
bb (r) = vbb(r) + Wbb(r) can also be negative for all r. Indeed for most

situations pertaining to polymer mixtures, where ε∗bb ∼ 2.0, veff
bb (r) will be very strongly

negative (many kBT ). This implies, in turn, that the effective one component fluid of big

particles described solely in terms of the pairwise potential veff
bb (r) would be thermody-
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namically unstable; it would collapse2. However, in addition to the two-body term the

effective Hamiltonian contains a zero-body term −PV , where P is the pressure of the

reservoir of solvent and V is the volume, a one-body term Nbµ
ex
b , where Nb is the number

of big particles and many body contributions [23]. The stability of the system depends on

the total compressibility of the mixture which contains contributions from the structure

independent terms as well as the structural, osmotic compressibility [120]. By contrast the

phase behaviour of the mixture is not influenced by the structure independent terms [23].

Whether one can make useful progress in tackling the properties of a multi-component

soft core fluid by constructing effective one component Hamiltonians requires further in-

vestigation. If, as seems likely, one is forced to retain the many body contributions [119]

this will limit the usefulness of the one component description for soft core models.

Whilst we have focused in the main on Wbb(r), the two-body SM potential between two

big solute particles immersed in the small particle solvent, we should emphasize that our

results for a one-body quantity, the excess chemical potential of a single big particle, µex
b ,

contains much rich information about solvation. Moreover our DFT approach should cal-

culate µex
b very reliably – the subtleties and possible failings of the test particle procedure

in mixtures are not germane to the one body quantity. µex
b exhibits an interesting variation

with concentration as the binary solvent approaches phase separation (Fig. 7.9), reflecting

the formation of a thick adsorbed film surrounding the big particle. Understanding how

the presence of an adsorbed phase influences the solvation of a big particle is of general

interest in physical chemistry. It is thought to be relevant in the theory of hydrophobic

solvation. Lum et al. [121] studied the formation of a low density (drying) film of water

vapour around a spherical hydrophobic (hard-sphere) solute particle immersed in a model

of liquid water that was very close to bulk coexistence. Their theory for the density profile

and for µex
b was based upon the effective reference fluid approach of Weeks and co-workers

[122, 123] but similar results emerge from a recent DFT treatment [124]. The presence of

the adsorbed vapour film gives rise to a liquid-vapour surface tension contribution to µex
b

when the hard-sphere radius is sufficiently large. This contribution is the direct analogue

of the fluid-fluid tension we find in the present study – see Sec. 7.4.4. However, we find

that the overall form of µex
b in the GCM fluid is very different from that which one would

expect for a typical hard-core fluid [107, 125]; compare the results for µex
b in the GCM,

2Parola et al. [119] make the same point on the basis of an alternative, linear response, calculation of

Wbb(r).
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Eqs. (7.3.37) or (7.4.7), with Eq. (7.3.43), the formula for µex
b when the solute particle

has a hard core. The leading terms have a very different origin: in the soft-core Gaussian

system this is essentially the volume occupied by the big particle multiplied by the num-

ber density of small particles and by the energy cost, εbs, for these particles to overlap,

whereas in a hard core system the leading term is the work done in creating the cavity

for the big particle, i.e. the volume of the big particle multiplied by the pressure of the

solvent. Comparing the excess chemical potential, calculated as a function of the size of

the big particle and of the distance of the state point from the fluid-fluid phase boundary,

for soft core and hard-core fluids could shed some interesting light on solvation.



Chapter 8

Binary star-polymer solutions:

bulk and interfacial properties

Using an effective logarithmic-Gaussian pair potential that models the interaction between

star-polymers, we compare the hypernetted chain (HNC) and random phase approximations

(RPA) for calculating the bulk structure (including the Fisher-Widom and Lifshitz lines),

thermodynamic functions and phase diagram of a phase separating binary fluid of star-

polymers, of two-arm length ratio 2:1. Thereby, the stars considered here are equivalent

to linear chains in the mid-point representation of their effective interaction. We find

that at densities where the star coronas overlap the quasi-exact HNC and RPA give very

similar results. Using a density functional approach, with a functional which generates the

RPA, we calculate properties of the inhomogeneous binary fluid. We determine the surface

tension and one-body density profiles at the free fluid-fluid interface. For states well-

removed from the critical point the profiles exhibit pronounced oscillations. For a purely

repulsive planar wall potential that models the effective potential between a star-polymer

and a hard wall, we find a first order wetting transition with the associated pre-wetting

line.

8.1 Introduction

In chapter 4 we introduced the idea of effective interactions: When considering the problem

of polymers in solution one is faced with a huge task if one starts the theoretical description

from the monomeric degrees of freedom. The problem is greatly simplified if one can

143
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calculate an effective potential between the polymers, using a single position coordinate

for each polymer, typically the center of mass or the mid chain monomer [22, 21]; in Ch.

4 we outlined some of the strategies used to calculate effective potentials. The effective

potential between the polymer chains is in general a many body potential, and is density

dependent. However one finds that a density independent pair potential approximation

for the interaction between the individual polymer chains is sufficient to give a reasonable

description of the bulk structure and thermodynamics [22, 20, 34]. With this perspective,

one is then able to bring to bear on the problem the machinery developed for simple fluids,

e.g. using integral equation theories for bulk fluid structure and thermodynamics [1]. A

natural tool for calculating the properties of inhomogeneous fluids is density functional

theory (DFT) [7]. In this chapter we study a binary fluid of demixing star-polymers.

Star-polymers are made up of a number of polymer chains (referred to as arms) covalently

bonded to one common central core [126]. The arm number f , also called functionality, is

the physical property that allows one to interpolate between linear chains (f = 1, 2) and

the colloidal limit f À 1 in which the stars resemble hard spheres [22, 127, 128, 129].

We choose a binary mixture of star polymers with f = 2 arms (i.e., polymers) with

polymerisation ratio N1 : N2 = 2 : 1, in order to compare our results with those ob-

tained for the binary Gaussian core model (GCM) in chapters 5 and 6. Recall that the

GCM is a model for polymers in solution, modeling the effective potential between the

centers of mass of the polymers by a repulsive Gaussian potential, v(r) = ε exp(−r2/R2),

where for polymers at room temperature in an athermal solvent ε ' 2kBT and R ' Rg,

the polymer radius of gyration. Note that the GCM potential remains finite for all sep-

arations r, representing the fact that in the underlying polymer system the centers of

mass can completely overlap, even if the individual monomers cannot. In this chapter

we use an alternative representation for the chains: we choose their central monomers as

generalised coordinates for a coarse-grained description and employ accordingly the effec-

tive interactions between central monomers in treating the polymers as ultrasoft colloids.

In contrast to the center-of-mass potential, the central-monomer effective potential does

have a divergence as r → 0, albeit a very weak, logarithmic one. This property, derived

in the pioneering work of Witten and Pincus [130], stems from the scaling properties of

the partition function of self-avoiding random walks and can be generalized to stars with

an arbitrary number of arms [130]. Thus, the divergence is caused by the self-avoidance

that restricts the number of available configurations of infinitely thin polymer threads
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and not by the direct monomer-monomer interaction. We choose to focus on f = 2 arm

star-polymers in order to compare with the GCM because there is no difference between

a f = 2 arm star-polymer and a simple polymer, hence we are simply calculating the

properties of a binary polymer solution. In this case the star polymer potential is an ef-

fective polymer pair potential between the central monomers on each of the two polymers.

Since it is the same underlying system that these two effective potentials represent, these

two different effective potentials should result in the same thermodynamic properties and

phase behaviour. Indeed many of the results in this chapter are similar to those obtained

in chapters 5 and 6.

The present chapter is laid out as follows: in Sec. 8.2, we describe the model binary

star-polymer mixture. Then in Sec. 8.3, by comparing with the more accurate HNC,

we show that at sufficiently high densities the bulk structure and thermodynamics of the

binary fluid can be approximated well by the simple RPA. The HNC is essentially exact for

soft core particles, giving results almost indistinguishable from simulation for sufficiently

high densities of GCM particles [22, 37] and of star polymers with as many as 32 arms

[131]. We calculate both the HNC and the RPA fluid-fluid coexistence curves in the total

density-composition plane, and we find that at high densities, there is very little difference

between the two. In the same section we also calculate the Fisher-Widom line, i.e., the

line in the bulk phase diagram at which the asymptotic decay of the radial distribution

functions gij(r) cross over from monotonic to damped oscillatory, see Ch. 5.4, and the

Lifshitz lines, which separate regions where the partial structure factors Sij(k) have a

maximum at k = 0 from those where there is a minimum at k = 0. In Secs. 8.4 and 8.5

we use a Helmholtz free energy functional which generates the RPA for bulk correlation

functions to calculate the density profiles of the inhomogeneous binary fluid. We calculate

the density profiles, along with the surface tension, for the planar interface between the

demixed fluid phases in Sec. 8.4, and then in Sec. 8.5 we calculate the density profiles

of the binary fluid at a planar wall with a purely repulsive wall-fluid potential chosen to

model the effective interaction between a star polymer and a hard wall. We find that there

is a first order wetting transition, with the associated pre-wetting line, whereby the fluid

phase rich in the larger species completely wets the interface between the wall and the

fluid phase rich in the smaller species. Finally in Sec. 8.6 we summarize and conclude.
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8.2 The model mixture

In Refs. [132, 133], Jusufi et al. proposed a repulsive logarithmic-Gaussian form for the the

effective potential between the centers of a pair (arm number f < 10) of star polymers in

athermal solvents. This potential features a weak, − ln(r) divergence for small separations

r, reflecting the fact that polymers are ultrasoft ‘colloids’. The Gaussian decay pertains

for large r and is identical in its functional form with the effective interaction between

the centers of mass (the GCM) [20, 30, 19, 39]. Note that for arm numbers f > 10, the

Gaussian decay of the pair potential is replaced by a Yukawa decay [127]. The multi-

component generalization of the logarithmic-Gaussian potential reads as

βvij(r) =
5

18
f3/2








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− ln
(

r
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)

+ 1
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ijσ2
ij

for r ≤ σij ;

1
2τ2

ijσ2
ij

exp
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−τ2
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ij)

]

for r > σij ,
(8.2.1)

where σij is the corona diameter and τij is a parameter of order 1/Rij where Rij is

the radius of gyration [132] and β = 1/kBT . In the present work we choose to set

the arm number f = 2, so that the star polymer pair potential (8.2.1) is equivalent to

the effective potential between the central monomers on a polymer chain, and we can

therefore compare the the present ‘central-monomer’ representation with the ‘center of

mass’ effective potential used in chapters 5 and 6. The arm number f only appears in

the prefactor of the pair potential (8.2.1), so we expect that all results presented will be

qualitatively correct for f < 10. For the interaction parameters between unlike species in

a binary mixture, i, j = 1, 2, we choose the mixing rules:

σ12 =
1

2
(σ11 + σ22) (8.2.2)

and
1

τ2
12

=
1

2

(

1

τ2
11

+
1

τ2
22

)

. (8.2.3)

The additive rule, Eq. (8.2.2), is roughly what we expect for the effective cross interaction

corona diameter σ12. The precise value chosen for σ12 does not have much of an effect

on the overall phase behaviour of the system; it simply sets the critical point total bulk

density, ρc of the binary phase separating mixture. It thereby plays a role similar to

ε12 for the GCM in locating the critical point – see Sec. 5.2. The rule described by Eq.

(8.2.3), plays a more significant role in determining the behaviour of the binary fluid. Since

τij ' 1/Rij , we use Eq. (8.2.3) to determine τ12, because this relation has been found in
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simulations when considering the effective interaction between the centers of mass of the

polymers [30, 39] – this procedure is equivalent to the mixing rule (5.2.14).

In order to make a comparison with our earlier work in chapters 5 and 6, we choose

σ22/σ11 = 0.665 which is equivalent to a binary mixture of polymers of polymerisation

ratio N1 : N2 = 2 : 1.1 In Ref. [132], it was found that τii = 1.03/σii gives excellent

agreement with simulation results and, in addition, it brings about the best agreement

for the second virial coefficient of polymer solutions. Using these ratios along with Eqs.

(8.2.2) and (8.2.3), the model mixture parameters are completely determined.

8.3 Bulk structure and phase diagram

We consider a system consisting of M1 long and M2 short chains enclosed in the volume

V . Accordingly, we define the partial densities ρi = Mi/V , i = 1, 2 of the components,

as well as the total density ρ = ρ1 + ρ2 and the concentration of the small component,

x = ρ2/ρ. Due to the athermal character of the solvent the effective interactions are purely

entropic, i.e., they scale linearly with kBT and the thermal energy is the only energy scale

of the problem, as is clear from Eq. (8.2.1). Thereby, the temperature drops out of the

problem as an irrelevant variable and the thermodynamic space of the system is spanned

by the partial densities or equivalently the pair (x, ρ).

In order to determine the bulk structure of the binary fluid we use the hypernetted

chain (HNC) closure for direct pair correlation function, cij(r), in terms of the pair corre-

lation function hij(r) = gij(r) − 1 in the Ornstein-Zernike equations (the two component

generalisation of Eq. (2.2.1) [1]), which for a multi-component fluid is (c.f. Eq. (2.2.3)):

cij(r) = −βvij(r) + hij(r) − ln[1 + hij(r)]. (8.3.1)

We expect the HNC to be almost exact for describing the bulk structure of these soft

core particles at densities where the cores of the particles start to overlap (ρσ3 & 1.0).

This expectation is corroborated on the one hand from the known fact that for the one

component GCM the HNC results are indistinguishable from the simulation results at

these densities – see Ch. 4 and Refs. [22, 37, 38, 39] and on the other hand by the finding

that the HNC at high densities exhibits excellent agreement with simulation for a pure

1Recall that this arises from the scaling law R ∼ N ν connecting the spatial extent R of a self avoiding

polymer with its degree of polymerisation N , using the value ν = 3/5 for the Flory exponent.
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star-polymer fluid with functionality f = 32 [131].2

We define the partial structure factors Sij(k), i, j = 1, 2 of the mixture as

S11(k) = 1 + ρ1ĥ11(k);

S22(k) = 1 + ρ2ĥ22(k);

S12(k) =
√

ρ1ρ2ĥ12(k), (8.3.2)

where ĥij(k) denotes the Fourier transform of hij(r). In addition, we consider later the

concentration-concentration structure factor Scc(k), given by [134, 135]

Scc(k) = (1 − x)2S11(k) + x2S22(k) − 2x(1 − x)S12(k). (8.3.3)

In Fig. 8.1 we show the HNC partial structure factors for the binary fluid, comparing

also with the much simpler random phase approximation (RPA), which is given by cij(r) =

−βvij(r). The RPA closure to the Ornstein-Zernike equations becomes more accurate

as the density is increased and is very reliable for interaction potentials that diverge

slowly at the origin or are bounded there [38, 136]. Indeed, the RPA is in principle a

good candidate for examining the structure of uniform and nonuniform fluids, when the

condition
∫

d3r vij(r) < ∞ is fulfilled [136, 129] – as is the case for the GCM one- and

two-component systems. For non-bounded but slowly diverging interactions, the RPA is a

good approximation at least for the thermodynamics, but it can also hold for the structure

when the prefactor of the weakly diverging potential is small [136]. For the case at hand,

the prefactor of the logarithmically diverging potentials is indeed small, (5/18)f 3/2 = 0.786

for f = 2, and thus the RPA should be valid at sufficiently high densities; a hypothesis we

confirm.

The comparison in Fig. 8.1 reveals that the HNC and the RPA yield very similar

structure factors. The discrepancies between the two occur mostly for small k-values and

are most pronounced in the neighbourhood of the critical point. The existence of a spinodal

(and thus of phase separation) in the mixture is witnessed in both the HNC and the RPA

by the increase (and eventual divergence) of the structure factors at k = 0. As we move

along a path of fixed concentration x increasing the total density ρ, the RPA-structure

factors are seen to diverge earlier than the HNC-ones, a feature pointing to the fact that the

2Due to the f3/2-prefactor of the star-star potential, the f = 32-effective interaction is much steeper

than the f = 2-one. The success of the HNC for this steeper interaction, then, guarantees its validity for

the much softer interaction considered here.
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Figure 8.1: The partial structure factors, calculated along two different thermodynamic

paths in the (x, ρ)-plane of the star polymer mixture obtained from the HNC (solid lines)

and RPA (broken lines). (a) S11(k) for fixed total density ρσ3
11 = 5 and for different

concentrations x of species 2, as indicated on the plot. (b) Results for S22(k) along the

same path. (c) S11(k) at fixed concentration x = 0.7 and for increasing total densities,

from bottom to top ρσ3
11 = 1, 2, 3 and 4. The inset shows the result for ρσ3

11 = 5, a point

lying close to the RPA-critical (consolute) point (xc, ρcσ
3
11) = (0.7095, 5.71628), see also

Fig. 8.3. The inset axes have the same labels as those of the main plot. (d) Same as in

(c) but for the partial structure factor S22(k). Note that in all plots the k → 0-limits

predicted by the RPA are larger than those from the HNC and the discrepancies become

more pronounced in the neighbourhood of the RPA-critical point. At the critical point

S11(k = 0) and S22(k = 0) → +∞ whereas S12(k = 0) → −∞.
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RPA-coexistence region will be broader than the one predicted by the HNC. In addition,

the fluid structure factors are quite similar to the equivalent GCM partial structure factors

Sij(k). The reason for this is that in calculating Sij(k) one Fourier transforms the pair

potentials, vij(r), which involves integrals of the form
∫

dr r sin(kr)vij(r). Therefore,

the weak divergence of the pair potential vij(r) at small r has little effect because it is

suppressed by the multiplication with r sin(kr). It is rather the fashion in which vij(r)

decays as r → ∞ that has greater influence on the structure and the thermodynamics of

the mixture [20, 137]: as we show later, the quantity v̂ij(0) ∝
∫

dr r2vij(r) enters into the

RPA equation of state and is thus decisive in determining the phase boundaries.

We now turn our attention to the partial radial distribution functions (rdf’s) gij(r),

i, j = 1, 2, in particular at high densities and close to the borderlines x = 0 and x = 1.

In these cases, the HNC and the RPA yield practically identical results, so we examine

the HNC results here. As shown in Fig. 8.2, we find a signature of ‘clustering’ in the

rdf’s gij(r) of the minority phase, i.e., the development of a pronounced maximum. This

feature was also found for the GCM, e.g. see Fig. 7.13 and Ref. [47], but there the maxima

are at r = 0. In the present model gij(r) does not have a maximum at r = 0, because

our potentials have the logarithmic divergence at r = 0. Rather, the minority phase rdf’s

gii(r), have a peak in the range σii/2 . r . σii. Since σii is the diameter of the i-species

and r denotes distances between the central monomers, this corresponds, roughly, to the

centers of mass accumulating in one region and the polymers in the minority phase building

clusters. There is therefore good agreement between the center-of-mass and the central

monomer representation. Moreover, this clustering effect, which is more pronounced for

the large polymers, is an additional signature of phase separation.

Next we consider the overall phase behaviour of the mixture and make a comparison

between the binodal obtained from the HNC equation of state and that obtained from the

particularly simple RPA equation of state. The simplest (RPA) mean-field Helmholtz free

energy functional for the mixture reads as

F [{ρi}] = Fid[{ρi}] +
1

2

∑

ij

∫

d3r1

∫

d3r2 ρi(r1) ρj(r2)vij(|r1 − r2|) (8.3.4)

where Fid is the ideal gas part – recall from Ch. 5 that this functional generates the RPA

direct pair correlation functions

c
(2)
ij (r1, r2) = c

(2)
ij (|r1 − r2|) = −βvij(|r1 − r2|). (8.3.5)
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Figure 8.2: The HNC radial distribution functions gii(r) of the minority phases at high

total densities. (a) Large particles, g11(r) and (b) small particles, g22(r).
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This functional (8.3.4) replaces all excess free energy contributions with the mean-field

interaction terms that are bilinear in the density profiles ρi(r) of the components. Such

an approximation is expected to be accurate for the system at hand, which is deprived

of hard cores and of significant short-range, excluded-volume correlations, in particular at

high densities when the particles interact with a very large number of ‘neighbours’. In the

bulk mixture the densities are constants, ρi(r) = ρi. Expressing these in terms of the total

density ρ and the composition variable x, we can write the bulk Helmholtz free energy per

particle f̃ , as

f̃(ρ, x) = f̃id(ρ, x) +
1

2
ρ[(1 − x)2 v̂11(0) + 2x(1 − x) v̂12(0) + x2 v̂22(0)], (8.3.6)

which is equivalent to Eqs. (5.2.6) and (5.2.7). The ideal contribution, f̃id(ρ, x), contains

the ideal free energy of mixing, β−1{x ln(x) + (1 − x) ln(1 − x)} as well as an irrelevant

term with linear-ρ dependence. v̂ij(0) is the q = 0 limit of the Fourier transform (FT) of

the pair potential:

v̂ij(0) =

∫

d3r vij(r). (8.3.7)

Note that Eq. (8.3.6) is equivalent to calculating f̃ from the compressibility route. We

Legendre transform to obtain the Gibbs free energy per particle g = f̃ +Pv; where v = 1/ρ

is the volume per particle, and the pressure is given as P = −(∂f̃/∂v)x. The common

tangent construction on g yields the binodal (see also Ch. 5 Sec. 5.2) which is plotted

along with the spinodal in Fig. 8.3. We find that the binodal has a very similar shape

to that found for the GCM in Ch. 5, since they both have the same form for the bulk

Helmholtz free energy (8.3.6), but they differ in where they locate the critical point. For

the present star polymer model we find the critical point at ρcσ
3
11 = 5.7 where the star

corona diameter σ11 ' 1.32Rg
11, with Rg

11 the radius of gyration [132, 138]. On the other

hand, for the GCM studied in Ch. 5 we found ρcR
3
11 = 5.6 with radius R11 ' Rg

11.

We also determined the HNC-phase diagram. The HNC closure breaks down before a

spinodal is reached, as is well-known from previous studies [139, 140]. However, this poses

no difficulties in calculating the HNC binodals.3 For all points in the region where the

HNC converges, we calculate the pressure P and partial chemical potentials µ1, µ2 on a

grid. For the HNC, this calculation is local, i.e., one needs no thermodynamic integration

3We found, in fact, that the locus of points on which the HNC fails to converge is a curve that runs

close to the RPA-spinodal and in the U-shaped region in the high-density part of this curve the HNC has

no solutions.
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Figure 8.3: (a) The RPA-spinodal and binodal lines for the star-polymer mixture (dotted

and solid lines) along with the HNC-binodal (dashed line). x is the concentration of species

2, the smaller component. The straight segments denote HNC-tielines between coexisting

fluid phases whose coordinates are given by the closed circles at their ends. (b) The RPA-

phase diagram along with the Fisher-Widom line (light solid line) and the Lifshitz lines of

the various structure factors. The left hand branch of the FW line lies close to the Lifshitz

line for S11(k) (short dashed line) while the right hand branch lies close to the Lifshitz

line for S22(k) (long dashed line). The dash-dotted line is the Lifshitz line for Scc(k). The

points A-G on the right-hand branch of the binodal are located at total densities ρσ3
11 = 8,

10, 12, 14, 16, 18 and 20, at which the free interface density profiles will be calculated in

Section 8.4. The gray lines are RPA-isobars through the points A-G and their intersections

with the left-hand branch of the binodal yield the state points coexisting with A-G. The

open circle denotes the RPA-critical point.
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to obtain µ1 and µ2 [47, 141], since within the HNC

βµi = ln(Λ3
i ρi) +

∑

j

[

ρj

2

∫

drhij(r)[hij(r) − cij(r)] − ρj ĉij(0)

]

(8.3.8)

where hij(r) and cij(r) are the HNC total and direct pair correlation functions. From

µ1 and µ2, the Gibbs free energy per particle g = (1 − x)µ1 + xµ2 is readily obtainable.

We perform a 2d-interpolation of the pressure results to obtain P (x, ρ) as a function of

two variables for any x and ρ, and on this surface we determine the isobar curves P =

constant. We then draw the Gibbs free energy along the isobars to obtain gP (x), where

the subscript now denotes that P is fixed. For those pressures for which gP (x) is a convex

function of x, the system is in a single (mixed) state. For those for which it is not, the

common tangent construction determines the coexistence concentrations and densities.

The region in which the HNC has no solutions presents no difficulties. For the isobars

that intersect the borderline of this region, we simply have gP (x) with two ‘branches’ on

either side of the prohibited domain and we perform the common tangent construction on

those.

The HNC binodal is plotted in Fig. 8.3 along with the RPA one. It can be seen

that there is very good agreement between the two. The RPA-binodal is slightly broader

but the discrepancies become quickly suppressed in moving away from the critical point.

If one interprets the total density as an ‘inverse temperature’ and the concentration as a

‘density’ of a hypothetical one-component system, then the phase diagram can be regarded

as that corresponding to ‘liquid-gas’ coexistence. The RPA is then equivalent to the the

mean-field approximation, which usually delivers critical temperatures higher than the

true result. That the RPA critical density is lower than the HNC-one can be explained by

means of this analogy. The largest discrepancies between HNC and RPA occur close to

the critical point but these are less than 10% for the location of the binodal on the density

axis. Otherwise, the remarkable accuracy of the RPA can be understood by the fact that

the phase separation for our binary fluid occurs at a sufficiently high density that the

differences between the RPA and HNC routes to the bulk structure and thermodynamics

are indeed very small. We demonstrate this in Fig. 8.4, where we show representative

results for the chemical potentials and the pressure obtained by the two approaches. We

note that Finken et al. [47] have also made comparisons between the RPA and HNC

results for the binodal in the case of a binary mixture of repulsive GCM particles. They

report larger differences between the two theories than we find here. At present it is not
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clear why the differences should be larger for GCM particles than for the (very similar)

logarithmic-Gauss potentials we consider in the present study.

More detailed information about the nature of the interparticle correlations in the

mixture can be obtained by investigating the Fisher-Widom (FW) line [2]. The FW line

is determined by the asymptotic decay, r → ∞, of the total pairwise correlation functions

hij(r). It is the locus of points in the phase diagram, at which the ultimate decay of the

pair correlation functions crosses over from monotonic (Ornstein-Zernike like) to damped

oscillatory. The method for determining the FW line in mixtures is described in Ch. 5

Sec. 5.4, see also Ref. [52]. Using the RPA approximation for the direct pair correlation

function, ĉij(q) = −βv̂ij(q), greatly facilitates the calculation of the FW-line (as it did

for the GCM), since the Fourier transforms v̂ij(q) are analytic (see Appendix E). The

FW line for the present mixture is displayed in Fig. 8.3. We find that FW line is almost

exactly the same in shape and location in the phase diagram as that found, also using

the RPA, for the binary GCM corresponding to a 2:1 length ratio mixture of polymers –

see Fig. 5.1. We also find the same cusp in the FW line (bottom right hand corner, Fig.

8.3(b)) and the new line found for the GCM in Ch. 5. The latter denotes the crossover

from oscillatory decay with one wavelength, corresponding to the length-scale associated

with one of the particle species, to oscillatory decay with another wavelength, determined

by the size of the other species of particles. Because the RPA binodal and FW lines are

so similar in the present model to those found for the binary GCM in Ch. 5, we expect

the trends found as particle size asymmetry was varied in the GCM, to carry over to the

present model, i.e., as the size asymmetry is increased, the location of the critical point

should move towards the side of the phase diagram rich in the smaller species and the

cusp in the FW line should move to this side also. Note also that the pole determining

the asymptotic decay of gij(r) also sets the common bulk correlation length: ξ = 1/α0

[52]. It is possible to calculate the leading pole from numerical solutions of the HNC [57],

however we expect the asymptotic decay to be very well captured by the RPA, and the

dominant HNC pole to be very similar in value to that obtained from the analytically

tractable RPA, as was the case for the one-component GCM,4 – see Fig. 5.12.

The Lifshitz line [142, 143]5 separates the region in the phase diagram in which Sij(k)

4L.R. Croft, private communication.
5We note that for microemulsions both the Lifshitz- and the FW-line are used to signify the crossover

from the ‘sponge phase’ to the ‘random phase’ (there is no sharp thermodynamic transition between
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Figure 8.4: Comparison of the HNC- and RPA-results for the partial chemical potentials

(a) and the total pressure (b), at fixed concentration x = 0.5 and increasing total density

ρ.
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has a local maximum at k = 0 (as occurs near a critical point or spinodal) from that

in which it has a local minimum at k = 0. Making a small k expansion of the partial

structure factors

Sij(k) = a(ρ, x) + b(ρ, x)k2 + O(k4), (8.3.9)

and examining the sign of the term b(ρ, x), one sees that the Lifshitz line is the locus of

points b(ρ, x) = 0. The Lifshitz lines for two of the partial structure factors are displayed

in Fig. 8.3 and their shapes are similar to branches of the FW-line. This is because their

locations are driven by the proximity of the spinodal, which forces S11(k) and S22(k) to

have maxima at k = 0. These maxima survive as long as the pure imaginary pole (away

from the spinodal) is the dominant one. Close to the crossover to damped oscillatory

decay in hij(r), at the FW line, the maximum turns into a minimum. Hence the Lifshitz

and the FW-lines are closely related to one another but they are not identical. Since

phase separation in liquid mixtures is driven by concentration fluctuations it is natural

to examine the Lifshitz line for the concentration-concentration structure factor Scc(k)

defined in Eq. (8.3.3). As can be seen in Fig. 8.3, the domain enclosed by the Lifshitz line,

in which Scc(k = 0) is a maximum, is broader than the domain in which both S11(k = 0)

and S22(k = 0) are local maxima. This is the effect of the term −2x(1−x)S12(k). In fact,

the Lifshitz line for Scc(k = 0) does not close: even at very low densities, there survives a

domain, in this case 0.55 . x . 0.77, in which Scc(k) has a small maximum at k = 0. The

Lifshitz line for S12(k) runs similarly to the one for S11(k), but the regions it separates

are inverted with respect to the ones for S11(k) and S22(k): above the Lifshitz line for

S12(k), the latter has a local minimum at k = 0 and below it a local maximum,6 whereas

the situation is inverted for the other two.

8.4 The free fluid-fluid interface

In this section we calculate the inhomogeneous one-body density profiles of the fluid at

the planar interface between two coexisting phase-separated liquid phases and the corre-

the two, hence one resorts to structural criteria) [142, 143]. The locations of the two lines in the phase

diagram are related, as in the present fluid. We note also that in the microemulsion literature the FW-line

is referred to as the disorder line [142], the latter terminology being the common one for Ising models

[144, 145, 146, 49].
6Note that at the spinodal S12(k = 0) diverges to minus infinity, not to plus infinity as do S11(k = 0)

and S22(k = 0).
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sponding surface tension γ, using the same DFT (8.3.4) which generates the RPA. Once

again we work with the grand potential functional

ΩV [{ρi}] = F [{ρi}] −
∑

i

∫

d3r(µi − Vi(r))ρi(r), (8.4.1)

where µi is the chemical potential of species i = 1, 2, and determine the free interface

density profiles by setting the external potentials Vi(r) = Vi(z) = 0. Recall from Ch. 5.3

that within the present mean field approach the resulting profiles ρi(z), with z normal to

the interface, are non trivial, i.e., the interface has a finite width. Minimising (8.4.1) and

using (8.3.4) for F [{ρi}] yields a pair of coupled Euler-Lagrange equations for the profiles.

Due to the planar symmetry these can be reduced to a pair of 1-dimensional equations:

µi − Vi(z) = µi,id(ρi(z)) +
∑

j

∫

dz′ρj(z
′)ṽij(|z − z′|), for i, j = 1, 2 (8.4.2)

where the ideal gas chemical potential µi,id(ρi) = β−1 ln(Λ3
i ρi) (Λi is the thermal de-Broglie

wave-length) and

ṽij(|z − z′|) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy vij(|r − r′|). (8.4.3)

Eqs. (8.4.2) can be solved self consistently for the density profiles of the two species.

We find results very similar to those for the binary GCM in Ch. 5; again, the weak

divergence of the pair potential vij(r) has little effect. When (8.2.1) is substituted into

(8.4.3) we find that ṽij(z) is finite for all z: on integrating over the x − y plane the

− ln(r) divergence in vij(r) yields a term ∼ z2 ln(z), which is finite as z → 0. In fact

ṽij(z) resulting from Eqs. (8.2.1) and (8.4.3) has a very similar shape to that resulting

from substituting vij(r) = εij exp(−r2/R2
ij) (GCM) into (8.4.3). The resulting density

profiles for the coexisting states marked in Fig. 8.3(b) are displayed in Fig. 8.5. We find

pronounced oscillations in the density profile of the larger species, ρ1(z), for states well

removed from the critical point, similar to those we found for the GCM in Ch. 5. For

states B-G (see the phase diagram Fig. 8.3) both density profiles ρ1(z) and ρ2(z) exhibit

non-monotonic decay into the bulk phase which is rich in species 1. On the other side of

the interface, approaching the bulk phase rich in species 2, magnification shows that both

ρ1(z) and ρ2(z) are non-monotonic for states E-G. For state A, closer to the critical point,

there is no sign of oscillations on either side of the interface.

As with the GCM, it seems to be the location of the FW line that determines the

crossover from monotonic to damped oscillatory decay in the free interface density profiles.
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Figure 8.5: The fluid-fluid interface density profiles, calculated at states A-G in the phase

diagram [see Fig. 8.3(b)]. State A lies near the critical point and state G, for which the

interface is much sharper, far away from the critical point. These states correspond to total

bulk densities ρσ3
11 = 8, 10, 12, 14, 16, 18 and 20 in the phase rich in species 2. (a) Density

profiles of of species 1, the larger species. (b) Density profiles of species 2. The insets

show magnified regions for state G. Note the oscillations on both sides of the interface.
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On moving along the binodal away from the critical point, and crossing the intersection

with the FW line, there are bulk states (on the binodal) at which the the pair correlation

functions, hij(r), decay in a damped oscillatory fashion. Since it is the same pole in the

structure factors that determines the asymptotic decay of the one-body density profiles,

ρi(r), for these states on the oscillatory side of the FW line one should expect damped

oscillatory decay of ρi(r) into the bulk phase. For the present model the FW line intersects

the binodal on both sides so that when both bulk coexisting states are on the oscillatory

side of the FW line, then the asymptotic decay of the density profiles will be damped

oscillatory on both sides of the interface – as we found in Ch. 5 for the binary GCM.

Having calculated the equilibrium free interface density profiles we can determine the

surface tension, which is defined as the excess grand potential per unit area and can be

written as

γ =

∫ ∞

−∞
dz (P + ω(z)) , (8.4.4)

where P is the bulk pressure at coexistence and ω(z) is the grand potential density obtained

from Eqs. (8.3.4) and (8.4.1) with Vi(z) = 0. The reduced tension γ∗ = βγσ2
11 is plotted in

Fig. 8.6 for the interfaces corresponding to Fig. 8.5. We have chosen to plot γ∗ versus the

order parameter (ρA
1 − ρB

1 )σ3
11, where ρA

1 is the bulk density of species 1 in phase A, rich

in species 1, and ρB
1 is the same quantity in phase B, poor in species 1 – as we did for the

binary GCM in Ch. 5. Mean-field arguments imply that γ∗ should vanish as (ρA
1 − ρB

1 )3

on approaching the critical point and this is confirmed by our numerical results (see inset

to Fig. 8.6).

We can obtain an estimate for the surface tension of a phase separated mixture of ‘real’

star-polymers by choosing γ∗ = 5, corresponding to a state well removed from the critical

point, and setting T = 300 K and σ11 = 20 nm. We find γ = 52 µN/m, the same as for the

GCM.

The numerical values of γ∗ determine whether we can expect to observe oscillatory

density profiles in a more accurate treatment of the free interface. As the present mean

field functional does not include the effects of capillary wave fluctuations one needs to

make an estimate of these fluctuation effects on oscillatory structure [7]. In Ch. 5 on

the GCM free interface we addressed the issue of whether capillary-wave fluctuations

would destroy the layering structures we found in the DFT treatment of the interface.

The situation for the present model is the same as for the GCM; i.e., we assume that

DFT describes the ‘bare’ or ‘intrinsic’ profiles – which might be oscillatory, as in the
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Figure 8.6: The reduced surface tension, γ∗ = βγσ2
11, at the planar free interface, plotted

against the order parameter (ρA
1 − ρB

1 )σ3
11, the density difference in species 1 between the

two phases, which vanishes at the critical point. The line joining the data points is a

guide to the eye. Inset: double-logarithmic plot of the same quantities, demonstrating the

power-law dependence of γ∗; the straight line has gradient 3.

present case – and that fluctuations can be unfrozen on these. If one performs a Gaussian

smearing of the profiles over the interfacial thermal roughness ξ⊥ for a density profile

with decaying oscillations of wavelength 2π/α1 and decay length α̃−1
0 , these quantities

are unaltered but the amplitude is reduced by a factor exp[−(α2
1 − α̃2

0)ξ
2
⊥/2] [52, 61]. The

roughness ξ⊥ depends on the interfacial area L2
x and on the external potential, e.g. gravity.

Ignoring the latter one finds that the amplitude of the oscillations in the density profile

should be reduced by a factor (Lx/ξ)−ω[(α1/α̃0)2−1] where ω ≡ (4πβγξ2)−1 is, as usual,

the dimensionless parameter which measures the strength of capillary wave fluctuations

and ξ ≡ (α̃0)
−1. The larger the value of ω ∝ 1/γ∗, the more damped are the oscillations.

As mentioned in Ch. 5.5 the power law dependence on the interfacial area L2
x that this

unfreezing procedure predicts is supported by the simulations of Toxvaerd and Stecki

[62] and those of Chacón et al. [58, 59, 60]. For the present model at states where the

oscillations in the DFT profiles are very pronounced, as with the GCM, the calculated
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exponent in the power law is small, typically −0.1, which implies that the the amplitude

of the oscillations at these particularly ‘stiff’ interfaces should only be weakly damped

by the capillary-wave fluctuations. As emphasized in Ch. 5 the reduced surface tension

γ∗ far from the critical point is very large in these liquid mixtures since the coexisting

phases correspond to a very high pressure and there are very large density differences,

for the individual species, between the phases – see Fig. 8.3. Such large values of γ∗ do

not normally arise at the liquid-vapour interface of simple, one-component fluids where

the solid phase intervenes at low temperatures. However the model considered by Chacón

et al. [58, 59, 60] ensures that the ratio of the melting temperature Tm to the critical

temperature Tc is small, i.e., Tm/Tc . 0.2, and in these circumstances γ∗ can be large and

then damping of the oscillations is weak.

8.5 Star-polymers at a hard wall: wetting behaviour

By integrating the normal component of the osmotic pressure in the interior of the star

polymer along the area of contact between the star and the wall, Jusufi et al. [132] were able

to calculate the force, F (z), and therefore the potential acting between a star-polymer and

a hard wall, with z denoting the distance from the star center to the planar wall surface.

The force scales as F (z) ∼ 1/z as z → 0, and for z → ∞ the form F (z) ∼ (∂/∂z)erf(κiz)

pertains, where erf(x) = (2/
√

π)
∫ x
0 dt exp(−t2) is the error function and κ−1

i is a length

scale of order the radius of gyration of the polymer. For a star polymer with f = 2,

the value κi = 1.16/σii was found to give the best fit to simulations [132]. By matching

these two forms at z = σii/2 and then integrating to get the potential, Jusufi et al. [132]

proposed the following form for the effective potential Vi(z) between a star polymer and

a hard, planar wall:

βVi(z) = Λf3/2











− ln
(

2z
σii

)

−
(

4z2

σ2
ii
− 1

)

(

ψi − 1
2

)

+ ζi for z ≤ σii/2;

ζierfc(κiz)/erfc(κiσii/2) for z > σii/2
(8.5.1)

where erfc(x) = 1 − erf(x) is the complementary error function, ψi = (1 + κ2
i σ

2
ii/2)−1 is a

parameter chosen to guarantee the continuity of the local osmotic pressure in the interior

of the star polymer and

ζi =
2
√

πψi

κiσii
erfc

(κiσii

2

)

exp

(

κ2
i σ

2
ii

4

)

. (8.5.2)
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Figure 8.7: The density profiles of species 1, the larger particles, adsorbed at a wall

described by the potential (8.5.1), calculated along a path of constant total density, ρσ3
11 =

7.0, i.e., path A in Fig. 8.8. From left to right the profiles refer to x = 0.99, 0.95, 0.9,

0.88, 0.879, 0.878955, 0.878951 and 0.8789505, where x is the concentration of species 2

and xcoex = 0.87895019. The thickness of the adsorbed film increases continuously as

x → x+
coex, indicating complete wetting. The inset shows the density profiles of species 2

for the same values of x. Note that species 2 is depleted from the region adjoining the

wall.

The final parameter Λ, which has a weak f dependence, is also chosen to match the

simulation results, giving Λ = 0.46 when f = 2 [132].

By using Eq. (8.5.1) for the external potential in Eq. (8.4.1) we are modeling the binary

star polymer fluid at a hard wall. We found that for certain states approaching the binodal

on the side poor in species 1, the larger particles, a thick wetting layer of the coexisting

phase rich in species 1 was adsorbed at the wall, the thickness of which diverged at the

binodal. Typical wetting density profiles are displayed in Fig. 8.7. These were calculated

along a constant density path ρσ3
11 = 7.0, approaching the binodal (path A in Fig. 8.8).

Upon investigating higher total densities we found there is a first order wetting transition,

above which the wall no longer wets completely. The point on the binodal at which the
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Figure 8.8: The phase diagram obtained from the RPA (as in Fig. 8.3). The two filled

circles show the location of the pre-wetting line. The upper point on the binodal is the

wetting point where the pre-wetting line meets the binodal tangentially and the lower

point is the critical point at the end of the pre-wetting line. The inset shows the pre-

wetting line at greater magnification. The horizontal path labeled A is that along which

the density profiles in Fig. 8.7 are calculated.

wetting transition occurs, the wetting point, is at (x, ρσ3
11) = (0.959, 9.15). Descending

from the wetting point is a short pre-wetting line, ending in a pre-wetting critical point

at (x, ρσ3
11) = (0.951, 8.75). The pre-wetting line is displayed in Fig. 8.8. This wetting

scenario is very similar to that which we found in Ch. 6 for the binary GCM fluid at a

planar wall with a repulsive Yukawa potential mimicking the effective potential between

the Gaussian particles and a hard wall.

The wetting point and the pre-wetting line were determined by analysing the density

profiles and the adsorption of species 1, Γ1, defined by

Γ1 =

∫ ∞

0
dz (ρ1(z) − ρ1), (8.5.3)

where ρ1 = ρ1(∞), the density of species 1 in the bulk, i.e., far away from the wall. At the

pre-wetting line, the adsorption exhibits a discontinuous jump. In Fig. 8.9, the adsorption

calculated along constant total density paths (ρσ3
11 = 9.0, 8.9, 8.8 and 8.7) approaching
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the binodal is plotted. Figs. 8.9(a)-(c) correspond to paths that intersect the pre-wetting

line, whereas the path of Fig. 8.9(d) passes just below the pre-wetting line critical point.

We determine the location of the pre-wetting line by monitoring the jump in Γ1 and, in

the region of the pre-wetting critical point, the erosion of two branches in the free energy.

On solving numerically for the density profiles, one moves first along one branch, and

then jumps to the other before converging to the equilibrium solution. Note also that the

interfacial compressibility, χ12 = ∂Γ1/∂µ2 ∝ (∂Γ1/∂x)ρ still has a pronounced peak below

the critical point – see Fig. 8.9(d). The jump in the adsorption decreases for intersecting

paths approaching the pre-wetting critical point. These results should be compared with

those of Fig. 8.10, where Γ1 is plotted along the ρσ3
11 = 7.0 path (path A in Fig. 8.8),

along which the density profiles in Fig. 8.7 are calculated. This path is far away from the

wetting transition, and the film thickness increases smoothly with no jumps as the binodal

is approached; the thickness eventually diverging at the binodal.

We find that in the limit x → x+
coex, below the wetting point Γ1 increases linearly with

− ln ∆x, where ∆x = (x − xcoex) is the deviation from coexistence. This linear increase

with − ln ∆x is illustrated in Fig. 8.10. For ∆x → 0+, Γ1, as defined by (8.5.3), scales

proportionally to the film thickness l, i.e., Γ1 ∼ l(ρA
1 −ρB

1 ), where ρA
1 is the bulk coexisting

density of species 1 in phase A, rich in species 1 and wetting the wall, and ρB
1 is the bulk

density in phase B, poor in species 1. Equivalent behaviour was found for the GCM in Ch.

6 where we were able to describe the results by considering an effective interface potential,

Eq. (6.3.1), of the form

ωex(l; x) = l
(

ωA − ωB
)

+ γw,A + γA,B + ae−l/ξw + O(e−2l/ξw), (8.5.4)

where γw,A is the surface tension of the wall-phase A interface, γA,B that of the free A-B

interface, a is a coefficient dependent on ρ and ξw is the bulk correlation length in the

phase wetting the wall [11, 69, 15]. Eq. (8.5.4) is valid for a complete wetting situation;

minimisation of ωex with respect to l yields the equilibrium film thickness l for a given

undersaturation ∆x. ωB is the grand potential per unit volume in bulk phase B at given

chemical potentials µ1 and µ2, while ωA is the corresponding quantity in phase A at the

same chemical potentials. To lowest order in the chemical potential deviations:

ωA − ωB ' (ρA
1 − ρB

1 )∆µ1 + (ρA
2 − ρB

2 )∆µ2. (8.5.5)

Since ∆µi ≡ (µi − µi,coex) ∝ ∆x to lowest order, it follows that the first term on the right

hand side of Eq. (8.5.4) is proportional to l∆x. Minimisation of Eq. (8.5.4) then yields



166 Binary star-polymer solutions: bulk and interfacial properties

−11 −9 −7 −5 −3
ln(x−xcoex.)

0

5

10

15

20

25

−11 −9 −7 −5 −3

0

5

10

15

20

25

−11 −9 −7 −5 −3
ln(x−xcoex.)

0

5

10

15

20

25

Γ 1σ
11

2
−11 −9 −7 −5 −3

0

5

10

15

20

25
Γ 1σ

11

2

ρσ11

3
=9.0 ρσ11

3
=8.9

ρσ11

3
=8.8 ρσ11

3
=8.7

(a) (b)

(c) (d)

Figure 8.9: Plots of the adsorption of species 1, Γ1, versus the logarithm of the deviation

from bulk coexistence ln(x−xcoex), at constant total density ρ, for paths intersecting [(a)-

(c)] and passing just below (supercritical) (d) the pre-wetting line. The jumps in (a)-(c)

indicate the first-order pre-wetting transition.

l ∼ −ξw ln ∆x. We were able to confirm that the pre-factor to the logarithm is indeed

ξw = 1/α0, where α0 is the imaginary part of the pole with the smallest imaginary part

(see Sec. 8.3), in the structure factors, for the bulk wetting phase A.

The wall potential (8.5.1) that we employ decays as erfc(κiz) ∼ exp(−κ2
i z

2)/
√

πκiz

as z → ∞. If the wall potential we had chosen had a slower decay, then the effective

interface potential (8.5.4) might have additional wall contributions – see chapters 3 and

6, in particular Sec. 6.3.2.
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Figure 8.10: The adsorption of species 1, Γ1, along path A in Fig. 8.8 with constant

total density, ρσ3
11 = 7, as a function of the logarithm of the deviation from bulk coexis-

tence, ln(x − xcoex). The adsorption corresponds to the density profiles in Fig. 8.7. On

approaching the binodal, Γ1 increases linearly with − ln(x − xcoex).

8.6 Summary and concluding remarks

We have shown that a binary fluid of star-polymers, where the interactions between the

star-polymers are modeled by purely repulsive effective pair potentials, can phase separate

into two fluid phases. When the binodal lies at sufficiently high densities (ρσ3
11 & 5),

the quasi-exact HNC closure to the Ornstein-Zernike equations gives results for the bulk

structure and thermodynamics (including the binodal) which are very similar to those from

the much simpler RPA. We chose pair potential parameters to correspond to a binary fluid

of f = 2 arm star-polymers with length ratio 2:1 in order to compare with our results for

the binary GCM in Ch. 6. The GCM is an effective pair potential between the centers of

mass of polymer chains, so by choosing f = 2 the star-polymer pair potential should also be

that between the central monomers on a pair of polymers. We are therefore comparing two

perspectives: ‘central monomer’ versus ‘center of mass’ as the coordinate for the effective

pair potential between the polymers. Since it is the same underlying polymer system

that both are describing, the thermodynamics and, therefore, phase diagrams should be
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similar, and this is indeed what is found. Since the structure of the fluid is dependent on

the particular ‘perspective’ one takes for describing the fluid, one should expect somewhat

different structure factors and pair correlation functions. However, the two approaches

give a surprisingly similar picture in terms of the location of the FW line relative to

the binodal and the values for the bulk correlation length ξ. At this level it appears to

matter little that one approach employs an effective pair potential that is finite at r = 0

(the GCM) whereas the other has a weakly diverging pair potential (the star-polymer).

We also found the same line denoting the crossover in the asymptotic decay of the pair

correlation functions hij(r) from damped oscillatory decay with one wavelength to damped

oscillatory with another wavelength, joining the cusp in the FW line, that was found for

the GCM in Ch. 5.4. By calculating the Lifshitz lines we showed that the location of these

is closely related to that of the FW line.

Having shown that the RPA closure is a very good approximation for bulk pair correla-

tion functions, we used the simple Helmholtz free energy functional (8.3.4) which generates

the RPA to calculate one-body density profiles for the inhomogeneous fluid mixture. In

the case of the free fluid-fluid interface the density profiles of both species showed os-

cillations on both sides of the interface for certain states. The onset of the oscillations

was accounted for by the location of the FW line. We also calculated the density profiles

of the fluid at a repulsive wall potential equivalent to the effective potential between a

star-polymer and a hard wall, and showed that there was a first order wetting transition,

with the associated pre-wetting line. The picture that emerged from these studies of the

inhomogeneous fluid is very similar to that for the binary GCM.



Chapter 9

Final Remarks

To conclude we return to possible applications of the binary GCM and the log-Gauss

potentials used in Ch. 8 to describe mixtures of polymers. As mentioned in chapter 4,

the effective interaction between two identical isolated nonintersecting polymer chains,

averaged over the internal conformations, is well represented by a Gaussian whose width

R is of the same order as the radius of gyration and whose height is a few kBT . The

simulation study of Louis et al. [19, 20] showed that the Gaussian shape remains a good

approximation to the effective potential in dilute and semi-dilute solutions of self-avoiding

random walk (SAW) polymers and that the parameters ε and R do not vary strongly

with the concentration of the polymer: ε ' 2kBT . The same authors showed that the

Gaussian effective potential reproduces the structure and thermodynamic properties of

SAW polymer solutions over a wide concentration range. Such a procedure has great

appeal as the monomer degrees of freedom no longer appear; one treats the chains as ‘soft

colloids’ [19, 20]. Much less is established for mixtures of polymers; it is not known how

well the phase separation found for the GCM (using the RPA and the HNC [47]) accounts

for that which is observed at high concentration in mixtures of polymers with different

chain lengths1. Our results predict demixing phase separation in the semi-dilute regime, in

agreement with the results of Refs. [147, 148]. Phase separation is, of course, also observed

in polymer blends (melts). Given the predictions of rich interfacial behaviour that have

emerged from the present study of the GCM it would be worthwhile to pursue further

possible connections between demixing in polymer systems and in the GCM.

1In order to introduce phase separation it may be necessary to introduce explicit monomer-monomer

repulsion in the underlying polymer system (A.A. Louis, private communication).
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One could improve upon the state-independent pair potential approximation used here

which is most reliable for modeling polymers in dilute solutions (ρR3 < 1), and is only

approximately correct in the semi-dilute regime [34, 20]. In the semi-dilute regime we

could expect the GCM (and log-Gauss) pair potentials to acquire some additional density-

dependence in their parameters, mimicking the effects of many-body forces. Since we

have ignored any such dependence in this work, we expect our results to be only semi-

quantitatively correct for modeling polymer mixtures in the semi-dilute regime.

The rich bulk and interfacial phenomena displayed by the simple model presented in

this thesis show that the ‘colloidal approach’ of deriving effective pair potentials between

complex polymeric molecules can be very fruitful. Moreover, the remarkable success of

the simple and analytically tractable RPA in accounting for bulk correlation functions

and thermodynamic properties of the present log-Gauss and Gaussian model opens new

perspectives for the study of the properties of inhomogeneous mixtures of such ultrasoft-

particle fluids. Given the variety of ways that exist in colloidal science to externally

manipulate the conformations of chain-like molecules, we expect the RPA-approach to be

a tool whose applicability will be much wider than simply the system of chains in athermal

solvents presented here.

Although the (binary) GCM provides a simple, zeroth order model for polymers in solu-

tion, we believe the most appealing aspect of the model is that the simple RPA Helmholtz

free energy functional Eq. (5.2.2), seems to provide quite an accurate description of the

GCM fluid. It is the simplicity of the RPA that is useful: The GCM can be treated as a

‘test-bed’ for new theories in any of a variety of different aspects of liquid-state physics.

We are referring particularly to the results in Ch. 7, where we were able to use this sim-

ple model to test whether the effects of thick adsorbed wetting films are incorporated in

a general DFT method for calculating the solvent mediated potential between two large

particles dissolved in a solvent near to fluid-fluid coexistence. Thanks to the simplicity of

the model we were able to resolve which correlation effects were included in the theory,

and which were neglected, and, for example, to determine what factors determined the

depth of the SM potential. Had we used a more sophisticated functional, then we doubt

whether such a detailed analysis of the influence of thick adsorbed wetting films on the

SM potentials would have been possible.

Another use to which the GCM has been put, was to test the dynamical DFT proposed

by Marconi and Tarazona [149, 150]. Dzubiella and Likos [151] used the one-component
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GCM to test whether the dynamical DFT was able to describe a fluid confined in an exter-

nal potential that was suddenly changed (for example, the situation one might envisage if

there were a number of colloids confined in an optical tweezer). These authors compared

the results of dynamical DFT with those of Brownian Dynamics simulations. The signifi-

cance of the results of Dzubiella and Likos [151] was not in the specific properties of the

dynamics of the Gaussian particles, rather it was the ability to test the basic formalism

of the dynamical DFT using a simple model. We plan to use the binary GCM in a sim-

ilar way, in order to develop theories for the dynamics of binary fluids, for example, the

dynamics of phase separation for a fluid confined in an external potential. The (binary)

GCM can therefore be viewed as a useful ‘test-bed’ for testing new theories.

As a final remark we note that the binary Gaussian Core Model is very different from

the binary Gaussian Model introduced by Helfand and Stillinger [152] – see also Ref. [153].

In the latter v11(r) = v22(r) = 0 while the Mayer-f -function f12(r) ≡ exp(−βv12(r)) − 1

is a Gaussian. This model also exhibits fluid-fluid phase separation at high densities

[152, 153].





Appendix A

DFT and the Einstein Model

In this Appendix we begin by reminding the reader of the Classical Einstein model of a solid.

We subsequently attempt to treat the Einstein model within a DFT framework, and show

why this approach breaks down. Finally we make some, rather speculative, conclusions

about DFT theories for solids in general.

The Einstein model is perhaps the simplest model of a solid. In the Einstein model we

consider a set of N particles each labeled i with position ri, momentum pi and mass m.

Each particle is bound by a harmonic potential

vi(ri) = α(ri − Ri)
2, (A.0.1)

where α is the binding strength parameter, which determines how tightly the particle is

bound to the lattice site for this particle at Ri. The Hamiltonian for the Einstein model

is

H =
N

∑

i=1

[

p2
i

2m
+ vi(ri)

]

. (A.0.2)

Since this is just the Hamiltonian for a set of N independent harmonic oscillators, the

partition function for the system QN = QN
1 , where Q1 is the partition function for a single

oscillator. The partition function is

QN = h−3N

∫

drN

∫

dpN exp(−βH). (A.0.3)

Note that this does not have a 1/N ! indistinguishability factor – each particle is bound to

a different lattice site, and so the particles are distinguishable. The integrals in (A.0.3)

are all Gaussian, and so we obtain:

QN = Λ−3N

(

βα

π

)−3N/2

, (A.0.4)
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where

Λ =

√

2πβ~2

m
(A.0.5)

is the thermal de Broglie wavelength. The Helmholtz free energy is therefore

FEin = −kBT ln QN =
3

2
NkBT ln

(

Λ2βα

π

)

. (A.0.6)

Note that this free energy does not reduce to the ideal gas Helmholtz free energy in the

limit α → 0. This is a manifestation of the fact that by considering each particle bound

to a particular lattice site from the outset, the particles are distinguishable, which is not

the case for the ideal gas, or any other fluid. The internal energy is simply 3NkBT , which

we can obtain via the equipartition theorem, and the pressure P = −(∂F/∂V )T = 0 for

the Einstein model, since the free energy (A.0.6) is independent of the volume V .

The (time averaged) density profile for a single particle in an external potential is

simply proportional to the Boltzmann factor of that potential, which in the present case

of a harmonic potential, gives us a Gaussian density profile. The total density distribution

profile for the particles in the Einstein solid is therefore a sum of Gaussian peaks, each

centered around the set of lattice sites {Ri}:

ρ(r) =
N

∑

i=1

ρi(r) =
N

∑

i=1

(

βα

π

)3/2

e−βα(r−Ri)
2

, (A.0.7)

where ρi(r) is the density contribution from the ith particle which has a Gaussian density

distribution centered around Ri and the prefactor to the Gaussian is determined from the

normalization condition of one particle per lattice site. As a consistency check we can

use the density profiles (A.0.7) to calculate the contribution to the Helmholtz free energy,

from the external potentials (A.0.1):

〈V 〉 =
N

∑

i=1

∫

drρi(r)vi(r)

= α

(

βα

π

)3/2 N
∑

i=1

∫

dr (r − Ri)
2e−βα(r−Ri)

2

=
3

2
NkBT, (A.0.8)

which is, of course, simply the result one would obtain by applying the equipartition

theorem for the potential energy degrees of freedom.

Having recalled the Einstein solid, we shall now consider the results from DFT for the

same system. The basic idea behind most attempts to construct a classical DFT for solids,
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is that one can treat the solid as a (highly) inhomogeneous fluid and that one can apply

a DFT constructed for the fluid phase to treat the solid phase. In DFT’s for the solid

phase one often assumes the one-body density profile is of the form in Eq. (A.0.7) with

α, an inverse width parameter for the Gaussian peaks, treated as a variational parameter

to minimize the free energy. In classical DFT one considers the following Helmholtz free

energy functional:

F [ρ] = F [ρ] +

∫

drρ(r)V (r), (A.0.9)

where F [ρ] is the intrinsic Helmholtz free energy functional and V (r) is the external poten-

tial on the fluid. For the present Einstein system we cannot express the external potential

contribution to the Helmholtz free energy in this way because the external potential is

different for each particle – see Eq. (A.0.1) – in the Einstein model the ith particle sees

the ith potential well. This should alert us to the possibility that the present DFT ap-

proach may fail. However, for the present, we shall assume that the external potential

contribution to the Helmholtz free energy is 〈V 〉 = 3
2NkBT , i.e. that given by Eq. (A.0.8).

Returning to Eq. (A.0.9), the intrinsic Helmholtz free energy functional F [ρ] is nor-

mally split up as follows

F [ρ] = Fid[ρ] + Fex[ρ], (A.0.10)

where Fid[ρ] is the ideal gas contribution and Fex[ρ] is the excess part, which includes the

effects of any interactions that there are between the particles. The ideal gas contribution

to the intrinsic Helmholtz free energy functional is

Fid[ρ] = kBT

∫

drρ(r) [ln Λ3ρ(r) − 1]. (A.0.11)

We consider an ideal gas (i.e. Fex[ρ] = 0), with the external potential on the ith particle

given by Eq. (A.0.1) – i.e. corresponding to the Hamiltonian for the Einstein model, Eq.

(A.0.2). It appears reasonable to substitute Eq. (A.0.7) into Eq. (A.0.11), in order to

obtain the kinetic energy contribution to the Helmholtz free energy. If the parameter

α in the external potential is large, then the Gaussian peaks in the density profile, Eq.

(A.0.7), will be extremely narrow, and if we assume that the contribution from overlap

between Gaussian density peaks on neighbouring lattice sites in the integral obtained from

inserting Eq. (A.0.7) into (A.0.11) will be negligible, then one obtains:

F solid
id =

3

2
NkBT ln

(

Λ2βα

π

)

− 5

2
NkBT. (A.0.12)
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This is simply N times the contribution one would obtain from Eq. (A.0.11) on inserting

a single Gaussian density peak, ρ(r) = ρi(r). Note that the second term consists of

−3
2NkBT from the ρ(r) ln ρ(r) term and a further −NkBT from the −ρ(r) term. On the

other hand one can define the kinetic energy contribution to the Helmholtz free energy for

the Einstein model as (see Eqs. (A.0.6) and (A.0.8)):

FEin
ni ≡ FEin − 〈V 〉

=
3

2
NkBT ln

(

Λ2βα

π

)

− 3

2
NkBT. (A.0.13)

Clearly (A.0.13) differs from Eq. (A.0.12) by a term NkBT . In order to recover the correct

Helmholtz free energy within a DFT approach, for the Einstein solid with Fex[ρ] = 0 and

when α is large, we propose empirically a different functional for the non interacting solid,

namely

F [ρ] = F∗
ni[ρ] = kBT

∫

drρ(r) ln Λ3ρ(r), (A.0.14)

which simply omits the −ρ(r) term in Eq. (A.0.11). Inserting Gaussian density profiles

into (A.0.14) will, of course, increase (A.0.12) by +NkBT , thereby recovering (A.0.13).

We now briefly consider a solid composed of interacting particles. In this case, the

particles can be confined to a lattice site by the interactions with the neighbouring par-

ticles, rather than by an external potential such as (A.0.1). For example, for particles

interacting via a Gaussian pair potential, φ(r) = ε exp(−r2), the following expression:

FGCM
solid = F∗

ni[ρ] +
1

2

∫

dr

∫

dr′ρ(2)(r, r′)φ(|r − r′|), (A.0.15)

with F∗
ni[ρ] given by Eq. (A.0.14), gives a good approximation for the Helmholtz free

energy of the solid phases of the Gaussian core model, when one assumes that the one-

body density ρ(r) is of the same form as the density profile in the Einstein model, Eq.

(A.0.7), and that the two-body density, ρ(2)(r, r′), is also that of the reference Einstein

model – i.e. products of Gaussian peaks centered on the lattice sites [22, 37]. In this

theory α is treated as a variational parameter to minimize the free energy. This approach,

based on Eq. (A.0.15), is equivalent to the approximation for the Helmholtz free energy

obtained via the Gibbs-Bogoliubov inequality with the Einstein model as the reference

system, that was used for the Gaussian core model in Ref. [37] (also described in chapter

4). In chapter 4 we also proposed an alternative DFT theory for the solid phases of the

Gaussian core model, based on Eq. (A.0.11), which differs from that based on the Gibbs-

Bogoliubov inequality by a term −NkBT in the Helmholtz free energy. This leads to the
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question, which is the better approximation for the Helmholtz free energy for the solid

phase? The first comment to make is that the free energy from the Gibbs-Bogoliubov

inequality provides an upper bound for the true free energy of the solid, however, the

DFT is constructed empirically, as is the case for many DFTs, on the basis that it gives

reasonable results for the phase behaviour of the GCM solid.

It is interesting to note that the extra −NkBT term in the Helmholtz free energy of the

solid does not change the value obtained for the pressure, P , of the solid. We demonstrate

this as follows: The Helmholtz free energy per particle, f = F/N = fni + fex, where fex is

the excess contribution for interacting particles and fni = FEin
ni /N is the non-interacting

part, can be written as (see Eq. (A.0.13)):

fni =
3

2
kBT ln α + (α independent terms). (A.0.16)

The pressure is thus

βP

ρ
= βρ

∂f

∂ρ
= βρ

∂fni

∂ρ
+ βρ

∂fex

∂ρ

=
3ρ

2α

(

∂α

∂ρ

)

+ βρf ′
ex. (A.0.17)

For a given (ρ, T ), f is minimized with respect to α: ∂f/∂α|α=αmin = 0. Since the term

NkBT , which is the difference in the Helmholtz free energy obtained from the two theories,

is independent of α, this means that αmin is the same within both theories and therefore

(∂αmin/∂ρ) and the pressure P are the same within both theories. However, although

this term in the Helmholtz free energy does not change the pressure, it should affect the

values obtained for the chemical potential, and therefore any calculation of the liquid-solid

coexisting densities, as well as many other thermodynamic quantities for the solid phase;

for example, the extra term results in a difference of kB per particle (a significant amount)

in the value of the entropy calculated from the two theories for the Helmholtz free energy

of the solid phase. However, we do not believe these differences will significantly change

the phase diagram obtained for the GCM from these two theories.

Thinking beyond the GCM solid, we speculate, for certain model fluids, that it may

be profitable, when attempting to construct a DFT theory for the solid phase, to use Eq.

(A.0.14) as the non-interacting starting point for the theory, rather than Eq. (A.0.11). To

the expression in Eq. (A.0.14) one would then add an ‘excess’ functional F ∗
ex[ρ], incorpo-

rating the contribution to the Helmholtz free energy arising from the interactions between

the particles.
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We take the opportunity here to make a general point concerning the value obtained for

the entropy of the solid phase, when calculated within the DFT framework. We note that

DFT theories seem to systematically predict too low a value for the Lindemann ratio [46],

or equivalently, too large a value for the width parameter, α, for the Gaussian density peaks

– see Eq. (A.0.7). This can be seen in Baus’ review [45], where the Lindemann parameters

for some of the early theories of hard-sphere freezing are tabulated. It is also a feature

of the most recent theories for hard-sphere freezing, see for example Refs. [154, 46]. The

entropy of the solid depends quite sensitively on the value of α. The entropy change per

particle, ∆s = ∆S/N , on freezing has been calculated in several DFT theories of freezing

(see Ref. [45] and references therein), and there seems to be a discrepancy in the value

obtained for ∆s, when compared to simulations, that can be accounted for by considering

the discrepancy between the value obtained for α from DFT and from simulations: We

write the Helmholtz free energy as

f =
3

2
kBT ln α + Σ(T, α), (A.0.18)

where we have separated the α dependent part from the non-interacting part of the

Helmholtz free energy and we denote the remaining part by Σ(T, α). Σ(T, α) contains

both the (excess) contribution to the Helmholtz free energy, i.e. that due to the particle

interactions, as well as the α-independent terms in fid, the ideal-gas contribution to the

free energy. From Eq. (A.0.18) we can calculate the entropy per particle:

s = −
(

∂f

∂T

)

ρ

= −3

2
kB ln α − 3

2

kBT

α

(

∂α

∂T

)

ρ

−
(

∂Σ(T, α)

∂T

)

ρ

. (A.0.19)

The entropy is therefore, of course, dependent on the parameter α, the inverse width

parameter for the Gaussian density peaks. We shall now turn to one of the more successful

applications of DFT to the problem of hard-sphere freezing, the theory of Curtin and

Ashcroft [155, 156]. In table A.1 we reproduce some of table I in Ref. [156] (see also

Ref. [45]), comparing liquid-solid coexistence data for the hard-sphere solid, from the

DFT theory and from simulations. ρs and ρl are the coexisting solid and liquid densities.

The Lindemann parameter L is related to the parameter α by L = (3/βαa2)1/2 and

a = (4/ρs)
1/3 for the fcc lattice. Using these values we can determine the value of the

Gaussian width parameter α. From the simulation results, βαSIMσ2 = 77 and from the

DFT theory, βαDFT σ2 = 112, where σ is the hard-sphere diameter. Using these two

values we can calculate the difference in the non-interacting (ideal gas) part of the entropy
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ρs ρl ∆s/kB L

Simulation 1.04 0.94 1.16 0.126

Theory 1.025 0.905 1.31 0.104

Table A.1: Liquid-solid coexistence data for the hard-sphere solid, reproduced from Ref.

[156]. ρs and ρl are the coexisting solid and liquid densities, L is the Lindemann parameter

and ∆s is the entropy change per particle on freezing.

in Eq. (A.0.19), 3
2kB ln(αDFT /αSIM ), from using these two different values for α (for

hard-spheres (∂α/∂T )ρ = 0, and therefore the second term in Eq. (A.0.19) is zero). This

difference is 3
2kB ln(112/77) = 0.56kB, which is clearly very substantial. Of course, in

calculating ∆s we must also consider the additional effect on the entropy of changing α in

the term Σ(T, α) in the Helmholtz free energy. Nevertheless, the difference, 0.56kB, from

the difference in α in the non-interacting part of the Helmholtz free energy does seem to

be important in accounting for the discrepancy in the entropy change on freezing. This

seems to suggest that to improve a DFT theory for freezing one should focus on generating

the correct value for α in the theory.





Appendix B

Details of the binary GCM Pole

Structure

In this Appendix we show some details of the pole structure for the binary GCM, which

gives rise to the new crossover line (analogous to the Fisher-Widom line) marking the cross-

over in the asymptotic decay of h(r) from damped oscillatory with a particular wavelength,

to damped oscillatory with a different wavelength. Such crossover occurs when there is

a large enough asymmetry in the sizes of the of the two different species of particles. In

Figs. B.1 and B.2, we show the imaginary and real parts of the poles respectively, plotted

versus x, the relative concentration of species 2, for a binary fluid of GCM particles with

total density ρR3
11 = 2.0 and ε12 = ε11 = ε22 = 2kBT . In both figures, plots a) – f) show

the trend as we change the size asymmetry, q = R22/R11, between the two species in the

binary fluid. In Fig. B.1, we see that the pole with the smallest α0 is one with α1 6= 0

for x ' 0, but as x is increased → 1, the curve for this pole intersects the curve for a

purely imaginary pole (dashed line) twice – these two intersections give rise to the two

branches of the Fisher-Widom line. For plots a) – d), in Fig. B.1, there is no crossover

between poles with different real parts, α1. However, for plots e) – f), the two (solid)

curves corresponding to the poles with the lowest values for α0, each with different values

of α1 6= 0, cross over. For x . 0.7, it is the branch of α1 which is smallest in magnitude

in Fig. B.2, which corresponds to the pole with the smallest value of α0 in Fig. B.1. For

plots e) – f), there is a crossover at x ' 0.7 from the pole with the smallest value of α0

and α1, to a different pole, for which α0 is the lowest in magnitude, but for which α1 has

the second lowest magnitude – i.e. for x & 0.7 there is a pole with a lower value for α1,
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but a larger value for α0, than the pole which determines the asymptotic decay of h(r)

and which has the lowest value for α0. For this density the cross-over between the two

poles occurs in the region of the phase diagram where the purely imaginary pole dominates

the asymptotic decay of h(r), but at lower densities ρ, these poles have α0 with a value

lower than that for the purely imaginary pole, and therefore the asymptotic decay of h(r)

crosses over from damped oscillatory, to damped oscillatory with a different wavelength –

the locus of the cross over points in the phase diagram gives us the lines in the bottom

right hand corner of Figs. 5.1, 5.2 and 5.3.

0 0.5 1

0

2

4

6

α0R11

0 0.5 1 0 0.5 1

0

2

4

6

0 0.5 1
x

0

2

4

6

α0R11

0 0.5 1
x

0 0.5 1
x

0

2

4

6

a) b) c)

d) e) f)

Figure B.1: Imaginary part of the poles, α0, plotted versus x, the relative concentration

of species 2, for a binary fluid of GCM particles with fixed total density ρR3
11 = 2.0 and

ε12 = ε11 = ε22 = 2kBT . The solid lines correspond to poles with a non-zero real part, and

the dashed line, to the purely imaginary pole. Plots a) – f) correspond to different size

asymmetries, q = R22/R11. In a), q = 0.75; in b) q = 0.72, in c) q = 0.71, in d) q = 0.707,

in e) q = 0.705 and in f) q = 0.7.
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Figure B.2: Real part of the poles, α1, plotted versus x, the relative concentration of

species 2, for a binary fluid of GCM particles with total density ρR3
11 = 2.0 and ε12 =

ε11 = ε22 = 2kBT . Plots a) – f) correspond to different size asymmetries, q = R22/R11.

In a), q = 0.75; in b) q = 0.72, in c) q = 0.71, in d) q = 0.707, in e) q = 0.705 and in f)

q = 0.7.





Appendix C

Derivation of Eq. (7.3.37) for the

excess chemical potential

Inserting Eq. (7.3.10) into Eq. (7.3.35) we obtain:

ω(r) = − 1

β

(

ρ0
s − ρ∗e−r2/R2

bs

)

−1

2

(

ρ0
s − ρ∗e−r2/R2

bs

)

(

ρ0
s v̂

0
ss − ρ∗π3/2εssR

3e
− r2

R2
ss

(

1− R2

R2
ss

)

)

(C.0.1)

where R is given by Eq. (7.3.12). Subtracting Eq. (7.3.36) gives:

ω(r) − ω(∞) =
1

β
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bs +
1

2
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2
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(

1− R2

R2
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(C.0.2)

and after inserting Eq. (C.0.2) into Eq. (7.3.30) and performing the Gaussian integrals we

find

µex
b

π3/2
=
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. (C.0.3)

We now expand R in powers of Rss/Rbs, so that to O(Rss/Rbs)
2, R3 = R3

ss. Thus Eq.

(C.0.3) can be written as:

µex
b
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1
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2
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√
2

4
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(

Rss
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. (C.0.4)
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If we substitute for ρ∗ using Eq. (7.3.15) then we find

µex
b

π3/2εbsR
3
bs

=
µex

b

v̂0
bs

= ρ0
s −

√
2v̂0

ss

8εbs
(ρ∗)2 + O

(

Rss

Rbs

)2

, (C.0.5)

which is Eq. (7.3.37).



Appendix D

Wetting on Curved Substrates and

the Pre-Wetting line

In this Appendix we demonstrate the effect that a curved substrate has on the wetting

film thickness and pre-wetting line, for a fluid adsorbed on this substrate, rather than

on a planar wall (obtained taking limit Rb → ∞ for the curved substrate). The effect

of curvature is to add an additional term to the surface excess grand potential (binding

potential), Eq. (6.3.1). For example, for a spherical substrate, one must add a term

∆ωex(l) ' 2lγAB/Rb to Eq. (6.3.1) [11]. This means that there are now two terms in

(6.3.1) which are linear in l: this curvature term and the term ∝ l∆x, which incorporates

the effect of being off-coexistence. The equilibrium adsorbed film thickness is determined

by minimising (6.3.1) with respect to l, so since both these terms are linear in l, they have

a similar effect in determining the equilibrium adsorbed film thickness: curvature has

(exactly for large Rb) the same effect when determining the adsorbed fluid film thickness

as does being off-coexistence, when determining the wetting film thickness at a planar wall

[157]. We can see this in Fig. D.1, where we plot the density profiles for a binary fluid of

GCM particles (the phase diagram and pair-potential parameters are in Fig. 5.1), adsorbed

on the surface of a spherical substrate, with the external potential give by (7.6.3), with

Rb = 30R11, λ = R11 and Ai = Rii/R11. The bulk fluid has a total density ρR3
11 = 7.0 and

is at coexistence: x = xcoex ' 0.8854. For this system, at a planar wall, with the external

potential given by Eq. (7.6.3), with Rb → ∞, the adsorbed film thickness, l = ∞, i.e.

the substrate is completely wet. However, on the present curved substrate, the adsorbed

film thickness is finite – due to the curvature. Curvature also reduces the length of the
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pre-wetting line, and shifts the ‘wetting point’ to lower fluid total densities, i.e. closer to

the bulk critical point – see Fig. D.2.
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Figure D.1: Density profiles for the binary GCM on a curved substrate, with the external

potential given by Eq. (7.6.3), with Rb = 30R11, λ = R11 and Ai = Rii/R11. The bulk

fluid has a total density ρR3
11 = 7.0 and is at coexistence: x = xcoex ' 0.8854. The solid

line corresponds to the profile for species 1 and the dashed line to species 2. Note that the

adsorbed film thickness is finite, even at coexistence, due to the curvature of the substrate.
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Figure D.2: Phase diagram for a mixture of Gaussian particles, equivalent to a mixture

of two polymers with length ratio 2:1 – i.e. the same as Fig. 6.1. ρ is the total density

and x is the concentration of the smaller species 2. The inset shows (as does Fig. 6.1) a

magnification of the pre-wetting line, meeting the binodal at the wetting point (top solid

circle), for a wall potential given by Eq. (6.2.7) with λ/R11 = 1. The lower solid circle

denotes the pre-wetting critical point. The two additional lines in the inset, correspond

to the pre-wetting line for a curved substrate, with external potentials given by (7.6.3),

with λ = R11 and Ai = Rii/R11. The pre-wetting line with ends marked by triangles

corresponds to a substrate with Rb = 50R11, and that with unfilled circles, Rb = 30R11.





Appendix E

Fourier Transform of the Star

Polymer Pair Potential

The Fourier transforms of the three pair potentials vij(r) given in Eq. (8.2.1) can be

calculated analytically. The pair potentials have the form

vij(r) =
5

18
kBTf3/2 F (r/σij ; τijσij) , (E.0.1)

with a common function F (x; y) for all combinations i, j = 1, 2. Let Q ≡ kσij and

τ̄ij ≡ τijσij . Eq. (E.0.1) above implies that the FT v̂ij(k) of the potentials satisfy the

relation

v̂ij(k) =
5

18
kBTf3/2 σ3

ijF̃ (Q; τ̄ij). (E.0.2)

Using the specific form of the function F (x, y) given in Eq. (8.2.1) we obtain the function

F̃ (Q; τ̄ij) as:

F̃ (Q; τ̄ij) =
2π

τ̄2
ij

(

sin Q − Q cos Q

Q3

)

− 4π

(

sin Q − Si(Q)

Q3
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+
π
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ij

sin Q

Q

+
1

2τ̄2
ij

(

π

τ̄2
ij

)3/2

exp
[

τ̄2
ij − Q2/(4τ̄ij)

]

×
{

1 − 1

2

[

erf

(

τ̄ij +
iQ

2τ̄ij

)

+ erf

(

τ̄ij −
iQ

2τ̄ij

)]}

, (E.0.3)

with the sine integral

Si(z) =

∫ z

0

sin t

t
dt (E.0.4)

and the complex error function erf(z). Note that although the arguments of the error

functions in Eq. (E.0.3) are complex, the FT is real due to the property erf(z∗) = erf∗(z),

with the asterisk denoting the complex conjugate [158].
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